
wltp Documentation
Release 0.0.9-alpha.3

Kostis Anagnostopoulos

March 01, 2016

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Quick-start . 3
1.3 Discussion . 5

2 Install 7
2.1 Older versions . 7
2.2 Installing from sources . 8
2.3 Project files and folders . 8
2.4 Discussion . 9

3 Usage 11
3.1 Cmd-line usage . 11
3.2 GUI usage . 11
3.3 Excel usage . 11
3.4 Python usage . 13
3.5 IPython notebook usage . 15
3.6 Discussion . 15

4 Getting Involved 17
4.1 Sources & Dependencies . 17
4.2 Development procedure . 18
4.3 Specs & Algorithm . 19
4.4 Tests, Metrics & Reports . 20
4.5 Development team . 21
4.6 Discussion . 21

5 Frequently Asked Questions 23
5.1 General . 23
5.2 Technical . 23

6 API reference 25
6.1 Module: wltp.experiment . 25
6.2 Module: wltp.model . 28
6.3 Module: wltp.pandel . 30
6.4 Module: wltp.test.samples_db_tests . 37
6.5 Module: wltp.test.wltp_db_tests . 38

7 Changes 45
7.1 GTR version matrix . 45
7.2 Known deficiencies . 45
7.3 TODOs . 46
7.4 Releases . 46

i

8 Indices 51
8.1 Glossary . 51

9 Glossary 53

Python Module Index 55

ii

wltp Documentation, Release 0.0.9-alpha.3

Release 0.0.9-alpha.3

Documentation https://wltp.readthedocs.org/

Source https://github.com/ankostis/wltp

PyPI repo https://pypi.python.org/pypi/wltp

Keywords UNECE, automotive, car, cars, driving, engine, fuel-consumption, gears, gearshifs, rpm,
simulation, simulator, standard, vehicle, vehicles, wltc

Copyright 2013-2014 European Commission (JRC-IET)

License EUPL 1.1+

The wltp is a python package that calculates the gear-shifts of Light-duty vehicles running the WLTP driving-
cycles, according to UNECE‘s GTR (Global Technical Regulation) draft.

Fig. 1: Figure 1: WLTP cycle for class-3b Vehicles

Attention: This project is still in alpha stage. Its results are not considered “correct”, and official approval
procedures should not rely on them. Some of the known deficiencies are described in these places:

• In the Changes.
• Presented in the diagrams of the Tests, Metrics & Reports section.
• Imprinted in the wltp_db_tests test-case (automatically comparared with a pre-determined set of

vehicles from Heinz-db on each build) Currently, mean rpm differ from Heinz-db < 0.5% and gears diff
< 5% for a 1800-step class-3 cycle.

Contents 1

https://wltp.readthedocs.org/
https://github.com/ankostis/wltp
https://pypi.python.org/pypi/wltp
http://iet.jrc.ec.europa.eu/
https://joinup.ec.europa.eu/software/page/eupl

wltp Documentation, Release 0.0.9-alpha.3

2 Contents

CHAPTER 1

Introduction

1.1 Overview

The calculator accepts as input the vehicle’s technical data, along with parameters for modifying the execution of
the WLTC cycle, and it then spits-out the gear-shifts of the vehicle, the attained speed-profile, and any warnings.
It does not calculate any CO2 emissions.

An “execution” or a “run” of an experiment is depicted in the following diagram:

.---------------------. .----------------------------.
; Input-Model ; ; Output-Model ;

;---------------------; ;----------------------------;
; +--vehicle ; ____________ ; +---... ;

; +--params ; | | ; +--cycle_run: ;
; +--wltc_data ; ==> | Experiment | ==> ; t v_class gear ... ;

; ; |____________| ; -------------------- ;
; ; ; 00 0.0 1 ;

; ; ; 01 1.3 1 ;
; ; ; 02 5.5 1 ;

; ; ; ... ;
'---------------------' '----------------------------.

The Input & Output Data are instances of pandas-model, trees of strings and numbers, assembled with:

• sequences,

• dictionaries,

• pandas.DataFrame,

• pandas.Series, and

• URI-references to other model-trees.

1.2 Quick-start

On Windows/OS X, it is recommended to use one of the following “scientific” python-distributions, as they already
include the native libraries and can install without administrative priviledges:

• WinPython (Windows only),

• Anaconda,

• Canopy,

Assuming you have a working python-environment, open a command-shell, (in Windows use cmd.exe BUT
ensure python.exe is in its PATH), you can try the following commands:

Install

3

http://winpython.github.io/
http://docs.continuum.io/anaconda/
https://www.enthought.com/products/canopy/

wltp Documentation, Release 0.0.9-alpha.3

$ pip install wltp --pre
$ wltp --winmenus ## Adds StartMenu-items, Windows only.

See: Install

Cmd-line

$ wltp --version
0.0.9-alpha.3

$ wltp --help
...

See: Cmd-line usage

GUI

$ wltp --gui` ## For exploring model, but not ready yet.

Excel

$ wltp --excelrun ## Windows & OS X only

See: Excel usage

Python-code

from wltp.experiment import Experiment

input_model = { ... } ## See also "Python Usage" for model contents.
exp = Experiment(input_model)
output_model = exp.run()
print('Results: \n%s' % output_model['cycle_run'])

See: Python usage

Tip: The commands beginning with $, above, imply a Unix like operating system with a POSIX shell (Linux, OS
X). Although the commands are simple and easy to translate in its Windows counterparts, it would be worthwile
to install Cygwin to get the same environment on Windows. If you choose to do that, include also the following
packages in the Cygwin‘s installation wizard:

* git, git-completion

* make, zip, unzip, bzip2

* openssh, curl, wget

But do not install/rely on cygwin’s outdated python environment.

Tip: To install python, you can try the free (as in beer) distribution Anaconda for Windows and OS X, or the
totally free WinPython distribution, but only for Windows:

• For Anaconda you may need to install project’s dependencies manually (see setup.py) using conda.

• The most recent version of WinPython (python-3.4) although it has just changed maintainer, it remains
a higly active project, and it can even compile native libraries using an installations of Visual Studio, if
available (required for instance when upgrading numpy/scipy, pandas or matplotlib with pip).

You must also Register your WinPython installation and add your installation into PATH (see Fre-
quently Asked Questions). To register it, go to Start menu → All Programs → WinPython → WinPython
ControlPanel, and then Options → Register Distribution .

4 Chapter 1. Introduction

https://www.cygwin.com/
http://docs.continuum.io/anaconda/pkg-docs.html
http://winpython.sourceforge.net/
http://sourceforge.net/projects/stonebig.u/files/

wltp Documentation, Release 0.0.9-alpha.3

1.3 Discussion

1.3. Discussion 5

wltp Documentation, Release 0.0.9-alpha.3

6 Chapter 1. Introduction

CHAPTER 2

Install

Current 0.0.9-alpha.3 runs on Python-2.7+ and Python-3.3+ but 3.3+ is the preferred one, i.e, the desktop UI runs
only with it. It is distributed on Wheels.

Before installing it, make sure that there are no older versions left over. So run this command until you cannot
find any project installed:

$ pip uninstall wltp ## Use `pip3` if both python-2 & 3 are in PATH.

You can install the project directly from the PyPi repo the “standard” way, by typing the pip in the console:

$ pip install wltp --pre

• If you want to install a pre-release version (the version-string is not plain numbers, but ends with alpha,
beta.2 or something else), use additionally --pre.

• If you want to upgrade an existing instalation along with all its dependencies, add also --upgrade (or -U
equivalently), but then the build might take some considerable time to finish. Also there is the possibility
the upgraded libraries might break existing programs(!) so use it with caution, or from within a virtualenv
(isolated Python environment).

• To install it for different Python environments, repeat the procedure using the appropriate python.exe
interpreter for each environment.

•
Tip: To debug installation problems, you can export a non-empty DISTUTILS_DEBUG and distutils will
print detailed information about what it is doing and/or print the whole command line when an external
program (like a C compiler) fails.

After installation, it is important that you check which version is visible in your PATH:

$ wltp --version
0.0.9-alpha.3

To install for different Python versions, repeat the procedure for every required version.

2.1 Older versions

An additional purpose of the versioning schema of the project is to track which specific version of the GTR it im-
plements. Given a version number MAJOR.MINOR.PATCH, the MAJOR part tracks the GTR phase implemented.
See the “GTR version matrix” section in Changes for the mapping of MAJOR-numbers to GTR versions.

To install an older version issue the console command:

$ pip install wltp=1.1.1 ## Use `--pre` if version-string has a build-suffix.

7

https://pypi.python.org/pypi/wheel
https://pypi.python.org/pypi/wltp
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

wltp Documentation, Release 0.0.9-alpha.3

If you have another version already installed, you have to use --ignore-installed (or -I). For using the
specific version, check this (untested) stackoverflow question .

Of course it is better to install each version in a separate virtualenv (isolated Python environment) and shy away
from all this.

2.2 Installing from sources

If you download the sources you have more options for installation. There are various methods to get hold of
them:

• Download the source distribution from PyPi repo.

• Download a release-snapshot from github

• Clone the git-repository at github.

Assuming you have a working installation of git you can fetch and install the latest version of the project
with the following series of commands:

$ git clone "https://github.com/ankostis/wltp.git" wltp.git
$ cd wltp.git
$ python setup.py install ## Use `python3` if both python-2 & 3 installed.

When working with sources, you need to have installed all libraries that the project depends on:

$ pip install -r requirements/execution.txt .

The previous command installs a “snapshot” of the project as it is found in the sources. If you wish to link the
project’s sources with your python environment, install the project in development mode:

$ python setup.py develop

Note: This last command installs any missing dependencies inside the project-folder.

2.3 Project files and folders

The files and folders of the project are listed below:

+--wltp/ ## (package) The python-code of the calculator
| +--cycles/ ## (package) The python-code for the WLTC data
| +--test/ ## (package) Test-cases and the wltp_db
| +--model ## (module) Describes the data and their schema for the calculation
| +--experiment ## (module) The calculator
| +--plots ## (module) Diagram-plotting code and utilities
+--docs/ ## Documentation folder
| +--pyplots/ ## (scripts) Plot the metric diagrams embeded in the README
+--devtools/ ## (scripts) Preprocessing of WLTC data on GTR and the wltp_db
| +--run_tests.sh ## (script) Executes all TestCases
+--wltp ## (script) The cmd-line entry-point script for the calculator
+--setup.py ## (script) The entry point for `setuptools`, installing, testing, etc
+--requirements/ ## (txt-files) Various pip-dependencies for tools.
+--README.rst
+--CHANGES.rst
+--LICENSE.txt

8 Chapter 2. Install

http://stackoverflow.com/questions/6445167/force-python-to-use-an-older-version-of-module-than-what-i-have-installed-now
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://pypi.python.org/pypi/wltp
https://github.com/ankostis/wltp/releases
http://git-scm.com/
http://pythonhosted.org/setuptools/setuptools.html#development-mode

wltp Documentation, Release 0.0.9-alpha.3

2.4 Discussion

2.4. Discussion 9

wltp Documentation, Release 0.0.9-alpha.3

10 Chapter 2. Install

CHAPTER 3

Usage

3.1 Cmd-line usage

Warning: Not implemented in yet.

The command-line usage below requires the Python environment to be installed, and provides for executing an
experiment directly from the OS’s shell (i.e. cmd in windows or bash in POSIX), and in a single command. To
have precise control over the inputs and outputs (i.e. experiments in a “batch” and/or in a design of experiments)
you have to run the experiments using the API python, as explained below.

The entry-point script is called wltp, and it must have been placed in your PATH during installation. This script
can construct a model by reading input-data from multiple files and/or overriding specific single-value items.
Conversely, it can output multiple parts of the resulting-model into files.

To get help for this script, use the following commands:

$ wltp --help ## to get generic help for cmd-line syntax
$ wltcmdp.py -M vehicle/full_load_curve ## to get help for specific model-paths

and then, assuming vehicle.csv is a CSV file with the vehicle parameters for which you want to override the
n_idle only, run the following:

$ wltp -v \
-I vehicle.csv file_frmt=SERIES model_path=params header@=None \
-m vehicle/n_idle:=850 \
-O cycle.csv model_path=cycle_run

3.2 GUI usage

Attention: Desktop UI requires Python 3!

For a quick-‘n-dirty method to explore the structure of the model-tree and run an experiment, just run:

$ wltp --gui

3.3 Excel usage

Attention: Excel-integration requires Python 3 and Windows or OS X!

11

wltp Documentation, Release 0.0.9-alpha.3

In Windows and OS X you may utilize the excellent xlwings library to use Excel files for providing input and
output to the experiment.

To create the necessary template-files in your current-directory you should enter:

$ wltp --excel

You could type instead wltp --excel file_path to specify a different destination path.

In windows/OS X you can type wltp --excelrun and the files will be created in your home-directory and the
excel will open them in one-shot.

All the above commands creates two files:

wltp_excel_runner.xlsm The python-enabled excel-file where input and output data are written, as seen
in the screenshot below:

After opening it the first tie, enable the macros on the workbook, select the python-code at the left and click
the Run Selection as Pyhon button; one sheet per vehicle should be created.

The excel-file contains additionally appropriate VBA modules allowing you to invoke Python code present
in selected cells with a click of a button, and python-functions declared in the python-script, below, using
the mypy namespace.

To add more input-columns, you need to set as column Headers the json-pointers path of the desired model
item (see Python usage below,).

wltp_excel_runner.py Utility python functions used by the above xls-file for running a batch of experi-
ments.

The particular functions included reads multiple vehicles from the input table with various vehicle charac-
teristics and/or experiment parameters, and then it adds a new worksheet containing the cycle-run of each
vehicle . Of course you can edit it to further fit your needs.

Note: You may reverse the procedure described above and run the python-script instead. The script will open the
excel-file, run the experiments and add the new sheets, but in case any errors occur, this time you can debug them,
if you had executed the script through LiClipse, or IPython!

Some general notes regarding the python-code from excel-cells:

• On each invocation, the predefined VBA module pandalon executes a dynamically generated python-
script file in the same folder where the excel-file resides, which, among others, imports the “sister” python-
script file. You can read & modify the sister python-script to import libraries such as ‘numpy’ and ‘pandas’,
or pre-define utility python functions.

• The name of the sister python-script is automatically calculated from the name of the Excel-file, and it must
be valid as a python module-name. Therefore do not use non-alphanumeric characters such as spaces(‘),
dashes(-) and dots(.‘) on the Excel-file.

• On errors, a log-file is written in the same folder where the excel-file resides, for as long as the message-box
is visible, and it is deleted automatically after you click ‘ok’!

• Read http://docs.xlwings.org/quickstart.html

12 Chapter 3. Usage

http://xlwings.org/quickstart/
http://docs.xlwings.org/quickstart.html

wltp Documentation, Release 0.0.9-alpha.3

3.4 Python usage

Example python REPL (Read-Eval-Print Loop) example-commands are given below that setup and run an exper-
iment.

First run python or ipython and try to import the project to check its version:

>>> import wltp

>>> wltp.__version__ ## Check version once more.
'0.0.9-alpha.3'

>>> wltp.__file__ ## To check where it was installed.
/usr/local/lib/site-package/wltp-...

If everything works, create the pandas-model that will hold the input-data (strings and numbers) of the experiment.
You can assemble the model-tree by the use of:

• sequences,

• dictionaries,

• pandas.DataFrame,

• pandas.Series, and

• URI-references to other model-trees.

For instance:

>>> from wltp import model
>>> from wltp.experiment import Experiment
>>> from collections import OrderedDict as odic ## It is handy to preserve keys-order.

>>> mdl = odic(
... vehicle = odic(
... unladen_mass = 1430,
... test_mass = 1500,
... v_max = 195,
... p_rated = 100,
... n_rated = 5450,
... n_idle = 950,
... n_min = None, ## Manufacturers my overridde it
... gear_ratios = [120.5, 75, 50, 43, 37, 32],
... resistance_coeffs = [100, 0.5, 0.04],
...)
...)

For information on the accepted model-data, check its JSON-schema:

>>> model.json_dumps(model.model_schema(), indent=2)
{

"properties": {
"params": {

"properties": {
"f_n_min_gear2": {
"description": "Gear-2 is invalid when N :< f_n_min_gear2 * n_idle.",
"type": [
"number",
"null"

],
"default": 0.9

},
"v_stopped_threshold": {
"description": "Velocity (Km/h) under which (<=) to idle gear-shift (Annex 2-3.3, p71).",

3.4. Python usage 13

wltp Documentation, Release 0.0.9-alpha.3

"type": [
...

You then have to feed this model-tree to the Experiment constructor. Internally the Pandel resolves URIs,
fills-in default values and validates the data based on the project’s pre-defined JSON-schema:

>>> processor = Experiment(mdl) ## Fills-in defaults and Validates model.

Assuming validation passes without errors, you can now inspect the defaulted-model before running the experi-
ment:

>>> mdl = processor.model ## Returns the validated model with filled-in defaults.
>>> sorted(mdl) ## The "defaulted" model now includes the `params` branch.
['params', 'vehicle']
>>> 'full_load_curve' in mdl['vehicle'] ## A default wot was also provided in the `vehicle`.
True

Now you can run the experiment:

>>> mdl = processor.run() ## Runs experiment and augments the model with results.
>>> sorted(mdl) ## Print the top-branches of the "augmented" model.
['cycle_run', 'params', 'vehicle']

To access the time-based cycle-results it is better to use a pandas.DataFrame:

>>> import pandas as pd
>>> df = pd.DataFrame(mdl['cycle_run']); df.index.name = 't'
>>> df.shape ## ROWS(time-steps) X COLUMNS.
(1801, 11)
>>> df.columns
Index(['v_class', 'v_target', 'clutch', 'gears_orig', 'gears', 'v_real', 'p_available', 'p_required', 'rpm', 'rpm_norm', 'driveability'], dtype='object')
>>> 'Mean engine_speed: %s' % df.rpm.mean()
'Mean engine_speed: 1917.0407829'
>>> df.describe()

v_class v_target clutch gears_orig gears \
count 1801.000000 1801.000000 1801 1801.000000 1801.000000
mean 46.506718 46.506718 0.0660744 3.794003 3.683509
std 36.119280 36.119280 0.2484811 2.278959 2.278108
...

v_real p_available p_required rpm rpm_norm
count 1801.000000 1801.000000 1801.000000 1801.000000 1801.000000
mean 50.356222 28.846639 4.991915 1917.040783 0.214898
std 32.336908 15.833262 12.139823 878.139758 0.195142
...

>>> processor.driveability_report()
...

12: (a: X-->0)
13: g1: Revolutions too low!
14: g1: Revolutions too low!

...
30: (b2(2): 5-->4)

...
38: (c1: 4-->3)
39: (c1: 4-->3)
40: Rule e or g missed downshift(40: 4-->3) in acceleration?

...
42: Rule e or g missed downshift(42: 3-->2) in acceleration?

...

You can export the cycle-run results in a CSV-file with the following pandas command:

14 Chapter 3. Usage

wltp Documentation, Release 0.0.9-alpha.3

>>> df.to_csv('cycle_run.csv')

For more examples, download the sources and check the test-cases found under the /wltp/test/ folder.

3.5 IPython notebook usage

The list of IPython notebooks for wltp is maintained at the wiki of the project.

3.5.1 Requirements

In order to run them interactively, ensure that the following requirements are satisfied:

1. A ipython-notebook server >= v2.x.x is installed for python-3, it is up, and running.

2. The wltp is installed on your system (see Install above).

3.5.2 Instructions

• Visit each notebook from the wiki-list that you wish to run and download it as ipynb file from the menu
(File|Download as...|IPython Notebook(.ipynb)).

• Locate the downloaded file with your file-browser and drag n’ drop it on the landing page of your note-
book’s server (the one with the folder-list).

Enjoy!

3.6 Discussion

3.5. IPython notebook usage 15

https://github.com/ankostis/wltp/wiki
http://ipython.org/notebook.html

wltp Documentation, Release 0.0.9-alpha.3

16 Chapter 3. Usage

CHAPTER 4

Getting Involved

This project is hosted in github. To provide feedback about bugs and errors or questions and requests for enhance-
ments, use github’s Issue-tracker.

4.1 Sources & Dependencies

To get involved with development, you need a POSIX environment to fully build it (Linux, OSX or Cygwin on
Windows).

First you need to download the latest sources:

$ git clone https://github.com/ankostis/wltp.git wltp.git
$ cd wltp.git

Virtualenv

You may choose to work in a virtualenv (isolated Python environment), to install dependency libraries isolated
from system’s ones, and/or without admin-rights (this is recommended for Linux/Mac OS).

Attention: If you decide to reuse stystem-installed packages using --system-site-packages with
virtualenv <= 1.11.6 (to avoid, for instance, having to reinstall numpy and pandas that require native-
libraries) you may be bitten by bug #461 which prevents you from upgrading any of the pre-installed packages
with pip.

Liclipse IDE

Within the sources there are two sample files for the comprehensive LiClipse IDE:

• eclipse.project

• eclipse.pydevproject

Remove the eclipse prefix, (but leave the dot()) and import it as “existing project” from Eclipse’s File menu.

Another issue is caused due to the fact that LiClipse contains its own implementation of Git, EGit, which badly
interacts with unix symbolic-links, such as the docs/docs, and it detects working-directory changes even after
a fresh checkout. To workaround this, Right-click on the above file Properties → Team → Advanced → Assume
Unchanged

Then you can install all project’s dependencies in ‘development mode using the setup.py script:

$ python setup.py --help ## Get help for this script.
Common commands: (see '--help-commands' for more)

17

https://github.com/ankostis/wltp/issues
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/pypa/virtualenv/issues/461
https://brainwy.github.io/liclipse/

wltp Documentation, Release 0.0.9-alpha.3

setup.py build will build the package underneath 'build/'
setup.py install will install the package

Global options:
--verbose (-v) run verbosely (default)
--quiet (-q) run quietly (turns verbosity off)
--dry-run (-n) don't actually do anything

...

$ python setup.py develop ## Also installs dependencies into project's folder.
$ python setup.py build ## Check that the project indeed builds ok.

You should now run the test-cases (see ref:metrics, below) to check that the sources are in good shape:

$ python setup.py test

Note: The above commands installed the dependencies inside the project folder and for the virtual-environment.
That is why all build and testing actions have to go through python setup.py some_cmd.

If you are dealing with installation problems and/or you want to permantly install dependant packages, you have
to deactivate the virtual-environment and start installing them into your base python environment:

$ deactivate
$ python setup.py develop

or even try the more permanent installation-mode:

$ python setup.py install # May require admin-rights

4.2 Development procedure

For submitting code, use UTF-8 everywhere, unix-eol(LF) and set git --config core.autocrlf =
input.

The typical development procedure is like this:

1. Modify the sources in small, isolated and well-defined changes, i.e. adding a single feature, or fixing a
specific bug.

2. Add test-cases “proving” your code.

3. Rerun all test-cases to ensure that you didn’t break anything, and check their coverage remain above 80%:

$ python setup.py nosetests --with-coverage --cover-package wltp.model,wltp.experiment --cover-min-percentage=80

Tip: You can enter just: python setup.py test_all instead of the above cmd-line
since it has been aliased in the setup.cfg file. Check this file for more example commands
to use during development.

4. If you made a rather important modification, update also the Changes file and/or other documents (i.e.
README.rst). To see the rendered results of the documents, issue the following commands and read the
result html at build/sphinx/html/index.html:

$ python setup.py build_sphinx # Builds html docs
$ python setup.py build_sphinx -b doctest # Checks if python-code embeded in comments runs ok.

5. If there are no problems, commit your changes with a descriptive message.

6. Repeat this cycle for other bugs/enhancements.

18 Chapter 4. Getting Involved

wltp Documentation, Release 0.0.9-alpha.3

7. When you are finished, push the changes upstream to github and make a merge_request. You can check
whether your merge-request indeed passed the tests by checking its build-status on the integration-server’s
site (TravisCI).

Hint: Skim through the small IPython developer’s documentantion on the matter: The perfect
pull request

4.3 Specs & Algorithm

This program was implemented from scratch based on this GTR specification (included in the docs/
folder). The latest version of this GTR, along with other related documents can be found at UNECE’s site:

• http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc_2013.html

• https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179

• Probably a more comprehensible but older spec is this one: https://www2.unece.org/wiki/display/trans/DHC+draft+technical+report

The WLTC-profiles for the various classes in the devtools/data/cycles/ folder were generated from the
tables of the specs above using the devtools/csvcolumns8to2.py script, but it still requires an intermedi-
ate manual step involving a spreadsheet to copy the table into ands save them as CSV.

Then use the devtools/buildwltcclass.py to construct the respective python-vars into the
wltp/model.py sources.

Data-files generated from Steven Heinz’s ms-access vehicle info db-table can be processed with the
devtools/preprocheinz.py script.

4.3.1 Cycles

4.3. Specs & Algorithm 19

https://github.com/ipython/ipython/wiki/Dev:-The-perfect-pull-request
https://github.com/ipython/ipython/wiki/Dev:-The-perfect-pull-request
http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc_2013.html
https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179
https://www2.unece.org/wiki/display/trans/DHC+draft+technical+report

wltp Documentation, Release 0.0.9-alpha.3

4.4 Tests, Metrics & Reports

In order to maintain the algorithm stable, a lot of effort has been put to setup a series of test-case and metrics
to check the sanity of the results and to compare them with the Heinz-db tool or other datasets included in the
project. These tests can be found in the wltp/test/ folders.

Additionally, below are auto-generated representative diagrams with the purpose to track the behavior and the
evolution of this project.

You can reuse the plotting code here for building nice ipython-notebooks reports, and (optionally) link them
in the wiki of the project (see section above). The actual code for generating diagrams for these metrics is in
wltp.plots and it is invoked by scripts in the docs/pyplot/ folder.

4.4.1 Mean Engine-speed vs PMR

First the mean engine-speed of vehicles are compared with access-db tool, grouped by PMRs:

Both tools generate the same rough engine speeds. There is though a trend for this project to produce lower rpm’s
as the PMR of the vehicle increases. But it is difficult to tell what each vehicle does isolated.

The same information is presented again but now each vehicle difference is drawn with an arrow:

It can be seen now that this project’s calculates lower engine-speeds for classes 1 & 3 but the trend is reversed for
class 2.

4.4.2 Mean Engine-speed vs Gears

Below the mean-engine-speeds are drawn against the mean gear used, grouped by classes and class-parts (so that,
for instance, a class3 vehicle corresponds to 3 points on the diagram):

20 Chapter 4. Getting Involved

wltp Documentation, Release 0.0.9-alpha.3

4.5 Development team

• Author:

– Kostis Anagnostopoulos

• Contributing Authors:

– Heinz Steven (test-data, validation and review)

– Georgios Fontaras (simulation, physics & engineering support)

– Alessandro Marotta (policy support)

4.6 Discussion

4.5. Development team 21

wltp Documentation, Release 0.0.9-alpha.3

22 Chapter 4. Getting Involved

CHAPTER 5

Frequently Asked Questions

5.1 General

5.1.1 Who is behind this? Who to contact?

The immediate involved persons is described in the Development team section. The author is a participating
member in the GS Task-Force on behalf of the EU Commission (JRC). The contact-emails to use are ...[TBD]

5.1.2 What is the status of the project? Is it “official”?

[TBD]

5.1.3 What is the roadmap for this project?

• Short-term plans are described in the TODOs section of Changes.

• In the longer run, it is expected to incorporate more WLTP calculations and reference data so that this
projects acts as repository for diagrams and technical reports on those algorithms.

5.1.4 Can I copy/extend it? What is its License, in practical terms?

I’m not a lawyer, but in a broad view, the core algorithm of the project is “copylefted” with the EUPL-1.1+ license,
and it includes files from other “non-copyleft” open source licenses like MIT MIT License and Apache License,
appropriately marked as such. So in an nutshell, you can study it, copy it, modify or extend it, and distrbute it, as
long as you always distribute the sources of your changes.

5.2 Technical

5.2.1 I followed the instructions but i still cannot install/run/do X. What now?

If you have no previous experience in python, setting up your environment and installing a new project is a
demanding, but manageable, task. Here is a checklist of things that might go wrong:

• Did you send each command to the appropriate shell/interpreter?

You should enter sample commands starting $ into your shell (cmd or bash), and those starting with >>>
into the python-interpreter (but don’t include the previous symbols and/or the output of the commands).

23

wltp Documentation, Release 0.0.9-alpha.3

• Is python contained in your PATH ?

To check it, type python in your console/command-shell prompt and press [Enter]. If nothing happens,
you have to inspect PATH and modify it accordingly to include your python-installation.

– Under Windows type path in your command-shell prompt. To change it, run regedit.exe and
modify (or add if not already there) the PATH string-value inside the following registry-setting:

HKEY_CURRENT_USER\Environment\

You need to logoff and logon to see the changes.

Note that WinPython does not modify your path! if you have registed it, so you definetely have to
perform the the above procedure yourself.

– Under Unix type echo $PATH$ in your console. To change it, modify your “rc’ files, ie:
~/.bashrc or ~/.profile.

• Is the correct version of python running?

Certain commands such as pip come in 2 different versions python-2 & 3 (pip2 and pip3, respectively).
Most programs report their version-infos with --version. Use --help if this does not work.

• Have you upgraded/downgraded the project into a more recent/older version?

This project is still in development, so the names of data and functions often differ from version to version.
Check the Changes for point that you have to be aware of when upgrading.

• Did you search whether a similar issue has already been reported?

• Did you ask google for an answer??

• If the above suggestions still do not work, feel free to open a new issue and ask for help. Write down your
platform (Windows, OS X, Linux), your exact python distribution and version, and include the print-out of
the failed command along with its error-message.

This last step will improve the documentation and help others as well.

5.2.2 I do not have python / cannot install it. Is it possible to try a demo?

[TBD]

5.2.3 Discussion

24 Chapter 5. Frequently Asked Questions

https://github.com/ankostis/wltp/issues

CHAPTER 6

API reference

The core of the simulator is composed from the following modules:

pandel A pandas-model is a tree of strings, numbers, sequences, dicts, pandas instances and resolvable URI-references, implemented by Pandel.
model Defines the schema, defaults and validation operations for the data consumed and produced by the Experiment.
experiment The core that accepts a vehicle-model and wltc-classes, runs the simulation and updates the model with results (downscaled velocity & gears-profile).

Among the various tests, those running on ‘sample’ databases for comparing differences with existing tool are the
following:

samples_db_tests Compares the results of synthetic vehicles from JRC against pre-phase-1b Heinz’s tool.
wltp_db_tests Compares the results of a batch of wltp_db vehicles against phase-1b-alpha Heinz’s tool.

The following scripts in the sources maybe used to preprocess various wltc data:

• devtools/preprocheinz.py

• devtools/printwltcclass.py

• devtools/csvcolumns8to2.py

6.1 Module: wltp.experiment

The core that accepts a vehicle-model and wltc-classes, runs the simulation and updates the model with results
(downscaled velocity & gears-profile).

Attention: The documentation of this core module has several issues and needs work.

6.1.1 Notation

• ALL_CAPITAL variables denote vectors over the velocity-profile (the cycle),

• ALL_CAPITAL starting with underscore (_) denote matrices (gears x time).

For instance, GEARS is like that:

[0, 0, 1, 1, 1, 2, 2, ... 1, 0, 0]
<---- cycle time-steps ---->

and _GEARS is like that:

25

wltp Documentation, Release 0.0.9-alpha.3

t:||: 0 1 2 3
---+-------------
g1:|[[1, 1, 1, 1, ... 1, 1
g2:| 2, 2, 2, 2, ... 2, 2
g3:| 3, 3, 3, 3, ... 3, 3
g4:| 4, 4, 4, 4, ... 4, 4]]

6.1.2 Major vectors & matrices

V: floats (#cycle_steps) The wltp-class velocity profile.

_GEARS: integers (#gears X #cycle_steps) One row for each gear (starting with 1 to #gears).

_N_GEARS: floats (#gears X #cycle_steps) One row per gear with the Engine-revolutions required to follow
the V-profile (unfeasable revs included), produced by multiplying V * gear-rations.

_GEARS_YES: boolean (#gears X #cycle_steps) One row per gear having True wherever gear is possible for
each step.

See also:

model for in/out schemas

class wltp.experiment.Experiment(model, skip_model_validation=False, vali-
date_wltc_data=False)

Bases: object

Runs the vehicle and cycle data describing a WLTC experiment.

See wltp.experiment for documentation.

__init__(model, skip_model_validation=False, validate_wltc_data=False)

Parameters

• model – trees (formed by dicts & lists) holding the experiment data.

• skip_model_validation – when true, does not validate the model.

run()
Invokes the main-calculations and extracts/update Model values!

@see: Annex 2, p 70

wltp.experiment.applyDriveabilityRules(V, A, GEARS, CLUTCH, driveability_issues)
@note: Modifies GEARS & CLUTCH. @see: Annex 2-4, p 72

wltp.experiment.calcDownscaleFactor(P_REQ, p_max_values, downsc_coeffs, dsc_v_split,
p_rated, v_max, f_downscale_threshold)

Check if downscaling required, and apply it.

Returns (float) the factor

@see: Annex 1-7, p 68

wltp.experiment.calcEngineRevs_required(V, gear_ratios, n_idle, v_stopped_threshold)
Calculates the required engine-revolutions to achieve target-velocity for all gears.

Returns array: _N_GEARS: a (#gears X #velocity) float-array, eg. [3, 150] –> gear(3),
time(150)

Return type array: _GEARS: a (#gears X #velocity) int-array, eg. [3, 150] –> gear(3),
time(150)

@see: Annex 2-3.2, p 71

wltp.experiment.calcPower_available(_N_GEARS, n_idle, n_rated, p_rated, load_curve,
p_safety_margin)

@see: Annex 2-3.2, p 72

26 Chapter 6. API reference

http://docs.python.org/3.4/library/functions.html#object

wltp Documentation, Release 0.0.9-alpha.3

wltp.experiment.calcPower_required(V, A, SLOPE, test_mass, f0, f1, f2, f_inertial)
@see: Annex 2-3.1, p 71

wltp.experiment.decideClass(wltc_data, p_m_ratio, v_max)
@see: Annex 1, p 19

wltp.experiment.downscaleCycle(V, f_downscale, phases)
Downscale just by scaling the 2 phases demarked by the 3 time-points with different factors, no recursion
as implied by the specs.

@see: Annex 1-7, p 64-68

wltp.experiment.gearsregex(gearspattern)

Parameters gearspattern – regular-expression or substitution that escapes decimal-bytes
written as: \g\d+ with adding +128, eg:

\g124|\g7 --> unicode(128+124=252)|unicode(128+7=135)

wltp.experiment.possibleGears_byEngineRevs(V, A, _N_GEARS, ngears, n_idle,
n_min_drive, n_min_gear2, n_max,
v_stopped_threshold, driveability_issues)

Calculates the engine-revolutions limits for all gears and returns for which they are accepted.

My interpratation for Gear2 n_min limit:
_____________ ______________

///INVALID///| CLUTCHED | GEAR-2-OK
EngineRevs(N): 0-----------------------+---------------------------->
for Gear-2 | | +--> n_clutch_gear2 := n_idle + MAX(

| | 0.15% * n_idle,
| | 3% * n_range)
| +---------> n_idle
+-----------------> n_min_gear2 := 90% * n_idle

Returns _GEARS_YES: possibibilty for all the gears on each cycle-step (eg: [0, 10] == True
–> gear(1) is possible for t=10)

Return type list(booleans, nGears x CycleSteps)

@see: Annex 2-3.2, p 71

wltp.experiment.possibleGears_byPower(_N_GEARS, P_REQ, n_idle, n_rated, p_rated,
load_curve, p_safety_margin, driveabil-
ity_issues)

@see: Annex 2-3.1 & 3.3, p 71 & 72

wltp.experiment.rule_a(bV, GEARS, CLUTCH, driveability_issues, re_zeros)
Rule (a): Clutch & set to 1st-gear before accelerating from standstill.

Implemented with a regex, outside rules-loop: Also ensures gear-0 always followed by gear-1.

NOTE: Rule(A) not inside x2 loop, and last to run.

wltp.experiment.rule_c2(bV, A, GEARS, CLUTCH, driveability_issues, re_zeros)
Rule (c2): Skip 1st-gear while decelerating to standstill.

Implemented with a regex, outside rules-loop: Search for zeros in _reversed_ V & GEAR profiles, for as
long Accel is negative. NOTE: Rule(c2) is the last rule to run.

wltp.experiment.run_cycle(V, A, P_REQ, gear_ratios, n_idle, n_min_drive, n_rated, p_rated,
load_curve, params)

Calculates gears, clutch and actual-velocity for the cycle (V). Initial calculations happen on engine_revs for
all gears, for all time-steps of the cycle (_N_GEARS array). Driveability-rules are applied afterwards on
the selected gear-sequence, for all steps.

Parameters

6.1. Module: wltp.experiment 27

wltp Documentation, Release 0.0.9-alpha.3

• V – the cycle, the velocity profile

• A – acceleration of the cycle (diff over V) in m/sec^2

Returns CLUTCH: a (1 X #velocity) bool-array, eg. [3, 150] –> gear(3), time(150)

Return type array

wltp.experiment.step_rule_b1(t, pg, g, V, A, GEARS, driveability_issues)
Rule (b1): Do not skip gears while accelerating.

wltp.experiment.step_rule_b2(t, pg, g, V, A, GEARS, driveability_issues)
Rule (b2): Hold gears for at least 3sec when accelerating.

wltp.experiment.step_rule_c1(t, pg, g, V, A, GEARS, driveability_issues)
Rule (c1): Skip gears <3sec when decelerating.

wltp.experiment.step_rule_d(t, pg, g, V, A, GEARS, driveability_issues)
Rule (d): Cancel shifts after peak velocity.

wltp.experiment.step_rule_e(t, pg, g, V, A, GEARS, driveability_issues)
Rule (e): Cancel shifts lasting 5secs or less.

wltp.experiment.step_rule_f(t, pg, g, V, A, GEARS, driveability_issues)
Rule(f): Cancel 1sec downshifts (under certain circumstances).

wltp.experiment.step_rule_g(t, pg, g, V, A, GEARS, driveability_issues)
Rule(g): Cancel upshift during acceleration if later downshifted for at least 2sec.

6.2 Module: wltp.model

Defines the schema, defaults and validation operations for the data consumed and produced by the Experiment.

The model-instance is managed by pandel.Pandel.

wltp.model._get_model_base()
The base model for running a WLTC experiment.

It contains some default values for the experiment (ie the default ‘full-load-curve’ for the vehicles). But
note that it this model is not valid - you need to override its attributes.

Returns a tree with the default values for the experiment.

wltp.model._get_model_schema(additional_properties=False, for_prevalidation=False)

Parameters additional_properties (bool) – when False, 4rd-step(validation) will
scream on any non-schema property found.

Returns The json-schema(dict) for input/output of the WLTC experiment.

wltp.model._get_wltc_data()
The WLTC-data required to run an experiment (the class-cycles and their attributes)..

Prefer to access wltc-data through model[’wltc_data’].

Returns a tree

wltp.model._get_wltc_schema()
The json-schema for the WLTC-data required to run a WLTC experiment.

:return :dict:

wltp.model.get_class_part_names(cls_name=None)

Parameters cls_name (str) – one of ‘class1’, ..., ‘class3b’, if missing, returns all 4 part-
names

wltp.model.get_class_parts_limits(cls_name, mdl=None, edges=False)
Parses the supplied in wltc_data and extracts the part-limits for the specified class-name.

28 Chapter 6. API reference

http://docs.python.org/3.4/library/array.html#module-array
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#str

wltp Documentation, Release 0.0.9-alpha.3

Parameters

• cls_name (str) – one of ‘class1’, ..., ‘class3b’

• mdl – the mdl to parse wltc_data from, if ommited, parses the results of
_get_wltc_data()

• edges – when True, embeds internal limits into (0, len)

Returns a list with the part-limits, ie for class-3a these are 3 numbers

wltp.model.get_class_pmr_limits(mdl=None, edges=False)
Parses the supplied in wltc_data and extracts the part-limits for the specified class-name.

Parameters

• mdl – the mdl to parse wltc_data from, if omitted, parses the results of
_get_wltc_data()

• edges – when True, embeds internal limits into (0, len)

Returns a list with the pmr-limits (2 numbers)

wltp.model.get_model_schema(additional_properties=False, for_prevalidation=False)

Parameters additional_properties (bool) – when False, 4rd-step(validation) will
scream on any non-schema property found.

Returns The json-schema(dict) for input/output of the WLTC experiment.

wltp.model.merge(a, b, path=[])
‘merges b into a

wltp.model.validate_model(mdl, additional_properties=False, iter_errors=False, vali-
date_wltc_data=False, validate_schema=False)

Parameters iter_errors (bool) – does not fail, but returns a generator of ValidationErrors

>>> validate_model(None)
Traceback (most recent call last):
jsonschema.exceptions.ValidationError: None is not of type 'object'
...

>>> mdl = _get_model_base()
>>> err_generator = validate_model(mdl, iter_errors=True)
>>> sorted(err_generator, key=hash)
[<ValidationError:
...

>>> mdl = _get_model_base()
>>> mdl["vehicle"].update({
... "unladen_mass":1230,
... "test_mass": 1300,
... "v_max": 195,
... "p_rated": 110.625,
... "n_rated": 5450,
... "n_idle": 950,
... "n_min": 500,
... "gear_ratios":[120.5, 75, 50, 43, 33, 28],
... "resistance_coeffs":[100, 0.5, 0.04],
... })
>>> err_generator = validate_model(mdl, iter_errors=True)
>>> len(list(err_generator))
0

6.2. Module: wltp.model 29

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/constants.html#True
http://docs.python.org/3.4/library/constants.html#True
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool

wltp Documentation, Release 0.0.9-alpha.3

6.3 Module: wltp.pandel

A pandas-model is a tree of strings, numbers, sequences, dicts, pandas instances and resolvable URI-references,
implemented by Pandel.

class wltp.pandel.ModelOperations
Bases: wltp.pandel.ModelOperations

Customization functions for traversing, I/O, and converting self-or-descendant branch (sub)model values.

static __new__(inp=None, out=None, conv=None)

Parameters

• inp (list) – the args-list to Pandel._read_branch()

• out – The args to Pandel._write_branch(), that may be specified either as:

– an args-list, that will apply for all model data-types (lists, dicts & pandas),

– a map of type –> args-list, where the None key is the catch-all case,

– a function returning the args-list for some branch-value, with signature: def
get_write_branch_args(branch).

• conv – The conversion-functions (convertors) for the various model’s data-types.
The convertors have signature def convert(branch), and they may be specified
either as:

– a map of (from_type, to_type) –> conversion_func(), where the
None key is the catch-all case,

– a “master-switch” function returning the appropriate convertor depending
on the requested conversion. The master-function’s signature is def
get_convertor(from_branch, to_branch).

The minimum convertors demanded by Pandel are (at least, check the code for
more):

– DataFrame <–> dict

– Series <–> dict

– ndarray <–> list

class wltp.pandel.Pandel(curate_funcs=())
Bases: object

Builds, validates and stores a pandas-model, a mergeable stack of JSON-schema abiding trees of strings
and numbers, assembled with

•sequences,

•dictionaries,

•pandas.DataFrame,

•pandas.Series, and

•URI-references to other model-trees.

Overview

The making of a model involves, among others, schema-validating, reading subtree-branches from URIs,
cloning, converting and merging multiple sub-models in a single unified-model tree, without side-effecting
given input. All these happen in 4+1 steps:

....................... Model Construction
------------ : _______ ___________ :
/ top_model /==>|Resolve|->|PreValidate|-+ :

30 Chapter 6. API reference

http://docs.python.org/3.4/library/stdtypes.html#list
http://docs.python.org/3.4/library/functions.html#object

wltp Documentation, Release 0.0.9-alpha.3

-----------' : |___0___| |_____1_____| | :
------------ : _______ ___________ | _____ ________ ______ : --------
/ base-model/==>|Resolve|->|PreValidate|-+->|Merge|->|Validate|->|Curate|==>/ model /
-----------' : |___0___| |_____1_____| |_ 2__| |___3____| |__4+__|: -------'

..

All steps are executed “lazily” using generators (with yield). Before proceeding to the next step, the
previous one must have completed successfully. That way, any ad-hoc code in building-step-5(curation),
for instance, will not suffer a horrible death due to badly-formed data.

[TODO] The storing of a model simply involves distributing model parts into different files and/or formats,
again without side-effecting the unified-model. Building model

Here is a detailed description of each building-step:

1._resolve() and substitute any json-references present in the submodels with content-fragments
fetched from the referred URIs. The submodels are cloned first, to avoid side-effecting them.

Although by default a combination of JSON and CSV files is expected, this can be customized, either
by the content in the json-ref, within the model (see below), or as explained below.

The extended json-refs syntax supported provides for passing arguments into _read_branch()
and _write_branch() methods. The syntax is easier to explain by showing what the default
_global_cntxt corresponds to, for a DataFrame:

{
"$ref": "http://example.com/example.json#/foo/bar",
"$inp": ["AUTO"],
"$out": ["CSV", "encoding=UTF-8"]

}

And here what is required to read and (later) store into a HDF5 local file with a predefined name:

{
"$ref": "file://./filename.hdf5",
"$inp": ["AUTO"],
"$out": ["HDF5"]

}

Warning: Step NOT IMPLEMENTED YET!

2.Loosely _prevalidate() each sub-model separately with json-schema, where any pandas-
instances (DataFrames and Series) are left as is. It is the duty of the developer to ensure that the
prevalidation-schema is loose enough that it allows for various submodel-forms, prior to merging, to
pass.

3.Recursively clone and _merge() sub-models in a single unified-model tree. Branches from sub-
models higher in the stack override the respective ones from the sub-models below, recursively. Dif-
ferent object types need to be converted appropriately (ie. merging a dict with a DataFrame
results into a DataFrame, so the dictionary has to convert to dataframe).

The required conversions into pandas classes can be customized as explained below. Series and
DataFrames cannot merge together, and Sequences do not merge with any other object-type (themselfs
included), they just “overwrite”.

The default convertor-functions defined both for submodels and models are listed in the following
table:

From: To: Method:
dict DataFrame pd.DataFrame (the constructor)
DataFrame dict lambda df: df.to_dict(’list’)
dict Series pd.Series (the constructor)
Series dict lambda sr: sr.to_dict()

6.3. Module: wltp.pandel 31

http://docs.python.org/3.4/reference/simple_stmts.html#yield
http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03

wltp Documentation, Release 0.0.9-alpha.3

4.Strictly json-_validate() the unified-model (ie enforcing required schema-rules).

The required conversions from pandas classes can be customized as explained below.

The default convertor-functions are the same as above.

5.(Optionally) Apply the _curate() functions on the the model to enforce dependencies and/or
any ad-hoc generation-rules among the data. You can think of bash-like expansion patterns, like
${/some/path:=$HOME} or expressions like %len(../other/path).

Storing model

When storing model-parts, if unspecified, the filenames to write into will be deduced from the jsonpointer-
path of the $out‘s parent, by substituting “strange” chars with undescores(_).

Warning: Functionality NOT IMPLEMENTED YET!

Customization

Some operations within steps (namely conversion and IO) can be customized by the following means (from
lower to higher precedance):

1.The global-default ModelOperations instance on the _global_cntxt, applied on both sub-
models and unified-model.

For example to channel the whole reading/writing of models through HDF5 data-format, it would
suffice to modify the _global_cntxt like that:

pm = FooPandelModel() ## some concrete model-maker
io_args = ["HDF5"]
pm.mod_global_operations(inp=io_args, out=io_args)

2.[TODO] Extra-properties on the json-schema applied on both submodels and unified-model
for the specific path defined. The supported properties are the non-functional properties of
ModelOperations.

4.Specific-properties regarding IO operations within each submodel - see the resolve building-step,
above.

3.Context-maps of json_paths –> ModelOperations instances, installed by
add_submodel() and unified_contexts on the model-maker. They apply to self-or-
descedant subtree of each model.

The json_path is a strings obeying a simplified json-pointer syntax (no char-normalizations yet),
ie /some/foo/1/pointer. An empty-string(’’) matches all model.

When multiple convertors match for a model-value, the selected convertor to be used is the most
specific one (the one with longest prefix). For instance, on the model:

[{ "foo": { "bar": 0 } }]

all of the following would match the 0 value:

•the global-default _global_cntxt,

•/, and

•/0/foo

but only the last’s context-props will be applied.

Atributes

model
The model-tree that will receive the merged submodels after build() has been invoked. Depending
on the submodels, the top-value can be any of the supported model data-types.

32 Chapter 6. API reference

http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5

wltp Documentation, Release 0.0.9-alpha.3

_submodel_tuples
The stack of (submodel, path_ops) tuples. The list’s 1st element is the base-model, the last one,
the top-model. Use the add_submodel() to build this list.

_global_cntxt
A ModelOperations instance acting as the global-default context for the unified-model and all
submodels. Use mod_global_operations() to modify it.

_curate_funcs
The sequence of curate functions to be executed as the final step by _curate(). They are “normal”
functions (not generators) with signature:

def curate_func(model_maker):
pass ## ie: modify ``model_maker.model``.

Better specify this list of functions on construction time.

_errored
An internal boolean flag that becomes True if any build-step has failed, to halt proceeding to the next
one. It is None if build has not started yet.

Examples

The basic usage requires to subclass your own model-maker, just so that a json-schema is provided for both
validation-steps, 2 & 4:

>>> from collections import OrderedDict as od ## Json is better with stable keys-order

>>> class MyModel(Pandel):
... def _get_json_schema(self, is_prevalidation):
... return { ## Define the json-schema.
... '$schema': 'http://json-schema.org/draft-04/schema#',
... 'required': [] if is_prevalidation else ['a', 'b'], ## Prevalidation is more loose.
... 'properties': {
... 'a': {'type': 'string'},
... 'b': {'type': 'number'},
... 'c': {'type': 'number'},
... }
... }

Then you can instanciate it and add your submodels:

>>> mm = MyModel()
>>> mm.add_submodel(od(a='foo', b=1)) ## submodel-1 (base)
>>> mm.add_submodel(pd.Series(od(a='bar', c=2))) ## submodel-2 (top-model)

You then have to build the final unified-model (any validation errors would be reported at this point):

>>> mdl = mm.build()

Note that you can also access the unified-model in the model attribute. You can now interogate it:

>>> mdl['a'] == 'bar' ## Value overridden by top-model
True
>>> mdl['b'] == 1 ## Value left intact from base-model
True
>>> mdl['c'] == 2 ## New value from top-model
True

Lets try to build with invalid submodels:

>>> mm = MyModel()
>>> mm.add_submodel({'a': 1}) ## According to the schema, this should have been a string,
>>> mm.add_submodel({'b': 'string'}) ## and this one, a number.

6.3. Module: wltp.pandel 33

wltp Documentation, Release 0.0.9-alpha.3

>>> sorted(mm.build_iter(), key=lambda ex: ex.message) ## Fetch a list with all validation errors.
[<ValidationError: "'string' is not of type 'number'">,
<ValidationError: "1 is not of type 'string'">,
<ValidationError: 'Gave-up building model after step 1.prevalidate (out of 4).'>]

>>> mdl = mm.model
>>> mdl is None ## No model constructed, failed before merging.
True

And lets try to build with valid submodels but invalid merged-one:

>>> mm = MyModel()
>>> mm.add_submodel({'a': 'a str'})
>>> mm.add_submodel({'c': 1})

>>> sorted(mm.build_iter(), key=lambda ex: ex.message) ## Missing required('b') prop rom merged-model.
[<ValidationError: "'b' is a required property">,
<ValidationError: 'Gave-up building model after step 3.validate (out of 4).'>]

__init__(curate_funcs=())

Parameters curate_funcs (sequence) – See _curate_funcs.

__metaclass__
alias of ABCMeta

_clone_and_merge_submodels(a, b, path=u’‘)
‘ Recursively merge b into a, cloning both.

_curate()
Step-4: Invokes any curate-functions found in _curate_funcs.

_get_json_schema(is_prevalidation)

Returns a json schema, more loose when prevalidation for each case

Return type dictionary

_merge()
Step-2

_prevalidate()
Step-1

_read_branch()
Reads model-branches during resolve step.

_resolve()
Step-1

_select_context(path, branch)
Finds which context to use while visiting model-nodes, by enforcing the precedance-rules described
in the Customizations.

Parameters

• path (str) – the branch’s jsonpointer-path

• branch (str) – the actual branch’s node

Returns the selected ModelOperations

_validate()
Step-3

_write_branch()
Writes model-branches during distribute step.

34 Chapter 6. API reference

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str

wltp Documentation, Release 0.0.9-alpha.3

add_submodel(model, path_ops=None)
Pushes on top a submodel, along with its context-map.

Parameters

• model – the model-tree (sequence, mapping, pandas-types)

• path_ops (dict) – A map of json_paths –> ModelOperations instances
acting on the unified-model. The path_ops may often be empty.

Examples

To change the default DataFrame –> dictionary convertor for a submodel, use the following:

>>> mdl = {'foo': 'bar'}
>>> submdl = ModelOperations(mdl, conv={(pd.DataFrame, dict): lambda df: df.to_dict('record')})

build()
Attempts to build the model by exhausting build_iter(), or raises its 1st error.

Use this method when you do not want to waste time getting the full list of errors.

build_iter()
Iteratively build model, yielding any problems as ValidationError instances.

For debugging, the unified model at model my contain intermediate results at any time, even if
construction has failed. Check the _errored flag if neccessary.

mod_global_operations(operations=None, **cntxt_kwargs)
Since it is the fall-back operation for conversions and IO operation, it must exist and have all its props
well-defined for the class to work correctly.

Parameters

• operations (ModelOperations) – Replaces values of the installed context
with non-empty values from this one.

• cntxt_kwargs – Replaces the keyworded-values on the existing operations.
See ModelOperations for supported keywords.

unified_contexts
A map of json_paths –> ModelOperations instances acting on the unified-model.

class wltp.pandel.PandelVisitor(schema, types=(), resolver=None, format_checker=None,
skip_meta_validation=False)

Bases: jsonschema.validators.Validator

A customized Draft4Validator suporting instance-trees with pandas and numpy objects, natively.

Any pandas or numpy instance (for example obj) is treated like that:

Python Type JSON Equivalence
pandas.DataFrame as object json-type, with obj.columns as keys, and

obj[col].values as values
pandas.Series as object json-type, with obj.index as keys, and obj.values as

values
np.ndarray, list,
tuple

as array json-type

Note that the value of each dataFrame column is a :ndarray instances.

The simplest validations of an object or a pandas-instance is like this:

>>> import pandas as pd

>>> schema = {
... 'type': 'object',
... }
>>> pv = PandelVisitor(schema)

6.3. Module: wltp.pandel 35

http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/stdtypes.html#list
http://docs.python.org/3.4/library/stdtypes.html#tuple

wltp Documentation, Release 0.0.9-alpha.3

>>> pv.validate({'foo': 'bar'})
>>> pv.validate(pd.Series({'foo': 1}))
>>> pv.validate([1,2]) ## A sequence is invalid here.
Traceback (most recent call last):
...
jsonschema.exceptions.ValidationError: [1, 2] is not of type 'object'

Failed validating 'type' in schema:
{'type': 'object'}

On instance:
[1, 2]

Or demanding specific properties with required and no additionalProperties:

>>> schema = {
... 'type': 'object',
... 'required': ['foo'],
... 'additionalProperties': False,
... 'properties': {
... 'foo': {}
... }
... }
>>> pv = PandelVisitor(schema)

>>> pv.validate(pd.Series({'foo': 1}))
>>> pv.validate(pd.Series({'foo': 1, 'bar': 2})) ## Additional 'bar' is present!
Traceback (most recent call last):
...
jsonschema.exceptions.ValidationError: Additional properties are not allowed ('bar' was unexpected)

Failed validating 'additionalProperties' in schema:
{'additionalProperties': False,
'properties': {'foo': {}},
'required': ['foo'],
'type': 'object'}

On instance:
bar 2
foo 1
dtype: int64

>>> pv.validate(pd.Series({})) ## Required 'foo' missing!
Traceback (most recent call last):
...
jsonschema.exceptions.ValidationError: 'foo' is a required property

Failed validating 'required' in schema:
{'additionalProperties': False,
'properties': {'foo': {}},
'required': ['foo'],
'type': 'object'}

On instance:
Series([], dtype: float64)

class wltp.pandel.PathMaps
Bases: object

Cascade prefix-mapping of json-paths to any values (here ModelOperations.

wltp.pandel.jsonpointer_parts(jsonpointer)
Iterates over the jsonpointer parts.

36 Chapter 6. API reference

http://docs.python.org/3.4/library/functions.html#object

wltp Documentation, Release 0.0.9-alpha.3

Parameters jsonpointer (str) – a jsonpointer to resolve within document

Returns a generator over the parts of the json-pointer

Author Julian Berman, ankostis

wltp.pandel.resolve_jsonpointer(doc, jsonpointer, default=<object object>)
Resolve a jsonpointer within the referenced doc.

Parameters

• doc – the referrant document

• jsonpointer (str) – a jsonpointer to resolve within document

Returns the resolved doc-item or raises RefResolutionError

Author Julian Berman, ankostis

wltp.pandel.set_jsonpointer(doc, jsonpointer, value, object_factory=<type ‘dict’>)
Resolve a jsonpointer within the referenced doc.

Parameters

• doc – the referrant document

• jsonpointer (str) – a jsonpointer to the node to modify

Raises JsonPointerException (if jsonpointer empty, missing, invalid-contet)

6.4 Module: wltp.test.samples_db_tests

Compares the results of synthetic vehicles from JRC against pre-phase-1b Heinz’s tool.

• Run as Test-case to generate results for sample-vehicles.

• Run it as cmd-line to compare with Heinz’s results.

class wltp.test.samples_db_tests.ExperimentSampleVehs(methodName=’runTest’)
Bases: unittest.case.TestCase

Compares a batch of vehicles with results obtained from “Official” implementation.

test1_AvgRPMs()
Check mean-engine-speed diff with Heinz within some percent.

Results:

mean std min max
python 1876.555626 146.755857 1652.457262 2220.657166
heinz 1892.048584 148.248303 1660.710716 2223.772904
diff_prcnt 0.008256 0.010170 0.004995 0.001403

test1_PMRatio()
Check mean-engine-speed diff with Heinz within some percent for all PMRs.

Results:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(40.759, 49.936] 1814.752308 1822.011660 0.004000 4
(49.936, 59.00401] 1861.137208 1879.822876 0.010040 4
(59.00401, 68.072] 2015.693195 2031.240237 0.007713 3
(68.072, 77.14] 1848.735584 1859.116047 0.005615 5
(77.14, 86.208] NaN NaN NaN 0
(86.208, 95.276] 1786.879366 1807.764020 0.011688 5
(95.276, 104.344] 1956.288657 1980.523043 0.012388 3
(104.344, 113.412] 1929.718933 1947.787155 0.009363 3

6.4. Module: wltp.test.samples_db_tests 37

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str

wltp Documentation, Release 0.0.9-alpha.3

(113.412, 122.48] 2033.321183 2051.602998 0.008991 1
(122.48, 131.548] 1781.487338 1781.591893 0.000059 1
(131.548, 140.616] NaN NaN NaN 0
(140.616, 149.684] 1895.125082 1907.872848 0.006727 1

wltp.test.samples_db_tests.driver_weight = 70
For calculating unladen_mass.

6.5 Module: wltp.test.wltp_db_tests

Compares the results of a batch of wltp_db vehicles against phase-1b-alpha Heinz’s tool.

• Run as Test-case to generate results for sample-vehicles.

• Run it as cmd-line to compare with Heinz’s results.

class wltp.test.wltp_db_tests.WltpDbTests(methodName=’runTest’)
Bases: unittest.case.TestCase

Compares a batch of vehicles with results obtained from “official” implementation.

test1_Downscale()
Check mean-downscaled-velocity diff with Heinz within some percent.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

python heinz diff_prcnt
count 378.000000 378.000000 0.000000e+00
mean 45.973545 46.189082 4.688300e-01
std 1.642335 1.126555 -4.578377e+01
min 35.866421 36.659117 2.210133e+00
25% 46.506718 46.504909 -3.892020e-03
50% 46.506718 46.506504 -4.620879e-04
75% 46.506718 46.506719 4.116024e-08
max 46.506718 46.506719 4.116024e-08

Not forcing class3b, honoring declared v_max & unladen_mass:

python heinz diff_prcnt
count 382.000000 382.000000 0.000000e+00
mean 44.821337 44.846671 5.652189e-02
std 5.054214 5.050208 -7.933394e-02
min 28.091672 28.388418 1.056347e+00
25% 46.506718 46.504868 -3.978244e-03
50% 46.506718 46.506478 -5.162230e-04
75% 46.506718 46.506719 4.116033e-08
max 46.506718 46.506719 4.116033e-08

test2a_gear_diffs()
Check diff-gears with Heinz stays within some percent.

Comparison history

Class3b-Vehicles, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

count MEAN STD min max
gears 23387 75.931818 56.921729 6 279
accell 19146 62.162338 48.831155 4 238
senza rules 16133 52.379870 35.858415 11 170

Separated test/unladen masses:

38 Chapter 6. API reference

wltp Documentation, Release 0.0.9-alpha.3

diff_gears diff_accel diff_orig
count 378.000000 378.000000 378.000000
mean 104.965608 86.171958 90.235450
std 100.439783 82.613475 109.283901
min 6.000000 4.000000 11.000000
25% 36.250000 25.250000 23.000000
50% 69.000000 57.500000 51.000000
75% 142.000000 119.750000 104.750000
max 524.000000 404.000000 600.000000
sum 39677.000000 32573.000000 34109.000000
mean% 5.831423 4.787331 5.013081

Not forcing class3b, honoring declared v_max & unladen_mass:

diff_gears diff_accel diff_orig
count 382.000000 382.000000 382.000000
mean 75.994764 63.633508 54.083770
std 58.290971 51.885162 38.762326
min 2.000000 2.000000 6.000000
25% 29.000000 22.000000 19.000000
50% 57.000000 48.500000 45.000000
75% 111.000000 97.000000 78.750000
max 279.000000 243.000000 173.000000
sum 29030.000000 24308.000000 20660.000000
mean% 4.221931 3.535195 3.004654

test2b_gear_diffs_transplanted()
Check driveability-only diff-gears with Heinz stays within some percent.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

diff_gears diff_accel diff_orig
count 378.000000 378.000000 378
mean 15.566138 5.634921 0
std 16.554295 8.136700 0
min 0.000000 0.000000 0
25% 5.000000 1.000000 0
50% 11.000000 3.000000 0
75% 19.750000 7.000000 0
max 123.000000 78.000000 0
sum 5884.000000 2130.000000 0
mean% 0.864785 0.313051 0

Not forcing class3b, honoring declared v_max & unladen_mass:

diff_gears diff_accel diff_orig
count 382.000000 382.000000 382
mean 12.599476 4.651832 0
std 15.375930 7.566103 0
min 0.000000 0.000000 0
25% 4.000000 0.000000 0
50% 9.000000 2.000000 0
75% 15.000000 6.000000 0
max 123.000000 78.000000 0
sum 4813.000000 1777.000000 0
mean% 0.699971 0.258435 0

test3a_n_mean()
Check mean-rpm diff with Heinz stays within some percent.

Comparison history

Class3b-Vehicles, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

6.5. Module: wltp.test.wltp_db_tests 39

wltp Documentation, Release 0.0.9-alpha.3

mean std min max
python 1766.707825 410.762478 1135.458463 3217.428423
heinz 1759.851498 397.343498 1185.905053 3171.826208
diff_prcnt -0.3896 -3.3772 4.4428 -1.4377

Separated test/unladen masses:

python heinz diff_prcnt
count 378.000000 378.000000 0.000000
mean 1923.908119 1899.366431 -1.292099
std 628.998854 593.126296 -6.048047
min 1135.458463 1185.905053 4.442839
25% 1497.544940 1495.699889 -0.123357
50% 1740.927971 1752.668517 0.674384
75% 2121.459309 2111.876041 -0.453780
max 4965.206982 4897.154914 -1.389625

Not forcing class3b, honoring declared v_max & unladen_mass:

python heinz diff_prcnt
count 382.000000 382.000000 0.000000
mean 1835.393402 1827.572965 -0.427914
std 476.687485 464.264779 -2.675781
min 1135.458463 1185.905053 4.442839
25% 1486.886555 1482.789006 -0.276341
50% 1731.983662 1739.781233 0.450210
75% 2024.534101 2018.716963 -0.288160
max 3741.849187 3750.927263 0.242609

test3b_n_mean_transplanted()
Check driveability-only mean-rpm diff with Heinz stays within some percent.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

python heinz diff_prcnt
count 378.000000 378.000000 0.000000
mean 1880.045112 1899.366431 1.027705
std 572.842493 593.126296 3.540904
min 1150.940393 1185.905053 3.037921
25% 1477.913404 1495.699889 1.203486
50% 1739.882957 1752.668517 0.734852
75% 2073.715015 2111.876041 1.840225
max 4647.136063 4897.154914 5.380063

Not forcing class3b, honoring declared v_max & unladen_mass:

python heinz diff_prcnt
count 382.000000 382.000000 0.000000
mean 1818.519842 1827.572965 0.497829
std 469.276397 464.264779 -1.079474
min 1150.940393 1185.905053 3.037921
25% 1467.153958 1482.789006 1.065672
50% 1730.051632 1739.781233 0.562388
75% 2010.264758 2018.716963 0.420452
max 3704.999890 3750.927263 1.239605

test4a_n_mean__PMR()
Check mean-rpm diff with Heinz stays within some percent for all PMRs.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

40 Chapter 6. API reference

wltp Documentation, Release 0.0.9-alpha.3

gened_mean_rpm heinz_mean_rpm diff_ratio count
pmr
(9.973, 24.823] 1566.018469 1568.360963 0.001496 32
(24.823, 39.496] 1701.176128 1702.739797 0.000919 32
(39.496, 54.17] 1731.541637 1724.959671 -0.003816 106
(54.17, 68.843] 1894.477475 1877.786294 -0.008889 61
(68.843, 83.517] 1828.518522 1818.720627 -0.005387 40
(83.517, 98.191] 1824.060716 1830.482140 0.003520 3
(98.191, 112.864] 1794.673461 1792.693611 -0.001104 31
(112.864, 127.538] 3217.428423 3171.826208 -0.014377 1
(127.538, 142.211] 1627.952896 1597.571904 -0.019017 1
(142.211, 156.885] NaN NaN NaN 0
(156.885, 171.558] NaN NaN NaN 0
(171.558, 186.232] 1396.061758 1385.176569 -0.007858 1

Separated test/unladen masses:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(11.504, 26.225] 1579.612698 1585.721306 0.386716 28
(26.225, 40.771] 1706.865069 1700.689983 -0.363093 41
(40.771, 55.317] 1866.150857 1841.779091 -1.323273 119
(55.317, 69.863] 2122.662626 2085.262950 -1.793523 122
(69.863, 84.409] 2228.282795 2171.952804 -2.593518 29
(84.409, 98.955] 1783.316413 1787.378401 0.227777 4
(98.955, 113.501] 1718.157828 1718.516147 0.020855 31
(113.501, 128.0475] 2005.415058 1954.763742 -2.591173 2
(128.0475, 142.594] 1566.601860 1553.383676 -0.850928 1
(142.594, 157.14] NaN NaN NaN 0
(157.14, 171.686] NaN NaN NaN 0
(171.686, 186.232] 1396.061758 1385.176569 -0.785834 1

Not forcing class3b, honoring declared v_max & unladen_mass:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(9.973, 24.823] 1560.010258 1563.836656 0.245280 33
(24.823, 39.496] 1725.209986 1725.004638 -0.011904 34
(39.496, 54.17] 1737.811065 1730.770088 -0.406812 123
(54.17, 68.843] 1996.999520 1983.753219 -0.667739 94
(68.843, 83.517] 2051.088434 2034.594136 -0.810692 59
(83.517, 98.191] 1964.832555 1958.081066 -0.344801 4
(98.191, 112.864] 1682.122484 1684.443875 0.138004 31
(112.864, 127.538] 2718.877009 2687.055802 -1.184241 2
(127.538, 142.211] 1660.925042 1668.155469 0.435325 1
(142.211, 156.885] NaN NaN NaN 0
(156.885, 171.558] NaN NaN NaN 0
(171.558, 186.232] 1396.061758 1385.176569 -0.785834 1
Mean: 0.419219429398

pandas 0.15.1:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(9.973, 24.823] 2037.027221 2038.842442 0.089111 33
(24.823, 39.496] 2257.302959 2229.999526 -1.224369 34
(39.496, 54.17] 1912.075914 1885.792807 -1.393743 123
(54.17, 68.843] 1716.720028 1717.808457 0.063402 94
(68.843, 83.517] 1677.882399 1683.916224 0.359610 59
(83.517, 98.191] 1535.881170 1551.609661 1.024070 4
(98.191, 112.864] 1571.290286 1589.997331 1.190553 31
(112.864, 127.538] 1409.308426 1425.965019 1.181898 2
(127.538, 142.211] 1975.481368 1967.808440 -0.389923 1
(142.211, 156.885] NaN NaN NaN 0

6.5. Module: wltp.test.wltp_db_tests 41

wltp Documentation, Release 0.0.9-alpha.3

(156.885, 171.558] NaN NaN NaN 0
(171.558, 186.232] 1950.377512 1937.426430 -0.668468 1
Mean diff_prcnt: 0.632095580562

test4b_n_mean__PMR_transplanted()
Check driveability-only mean-rpm diff with Heinz stays within some percent for all PMRs.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(9.973, 24.823] 1557.225037 1568.360963 0.715113 32
(24.823, 39.496] 1686.859826 1696.482640 0.570457 34
(39.496, 54.17] 1771.670097 1789.409819 1.001299 120
(54.17, 68.843] 2133.400050 2165.214662 1.491263 94
(68.843, 83.517] 2020.903728 2043.741660 1.130085 59
(83.517, 98.191] 1886.836446 1890.040533 0.169813 4
(98.191, 112.864] 1788.434592 1792.693611 0.238142 31
(112.864, 127.538] 2580.884314 2568.011660 -0.501269 2
(127.538, 142.211] 1581.625191 1597.571904 1.008249 1
(142.211, 156.885] NaN NaN NaN 0
(156.885, 171.558] NaN NaN NaN 0
(171.558, 186.232] 1367.068837 1385.176569 1.324566 1

Separated test/unladen masses:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(11.504, 26.225] 1572.733597 1585.721306 0.825805 28
(26.225, 40.771] 1690.081663 1700.689983 0.627681 41
(40.771, 55.317] 1821.319706 1841.779091 1.123327 119
(55.317, 69.863] 2060.507029 2085.262950 1.201448 122
(69.863, 84.409] 2142.964427 2171.952804 1.352723 29
(84.409, 98.955] 1783.214173 1787.378401 0.233524 4
(98.955, 113.501] 1713.473617 1718.516147 0.294287 31
(113.501, 128.0475] 1950.373771 1954.763742 0.225084 2
(128.0475, 142.594] 1543.937285 1553.383676 0.611838 1
(142.594, 157.14] NaN NaN NaN 0
(157.14, 171.686] NaN NaN NaN 0
(171.686, 186.232] 1367.068837 1385.176569 1.324566 1

Not forcing class3b, honoring declared v_max & unladen_mass:

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(9.973, 24.823] 1551.901645 1563.836656 0.769057 33
(24.823, 39.496] 1713.382835 1725.004638 0.678296 34
(39.496, 54.17] 1722.174466 1730.770088 0.499114 123
(54.17, 68.843] 1974.768859 1983.753219 0.454958 94
(68.843, 83.517] 2026.630271 2034.594136 0.392961 59
(83.517, 98.191] 1954.817179 1958.081066 0.166966 4
(98.191, 112.864] 1676.678357 1684.443875 0.463149 31
(112.864, 127.538] 2678.973439 2687.055802 0.301696 2
(127.538, 142.211] 1658.577318 1668.155469 0.577492 1
(142.211, 156.885] NaN NaN NaN 0
(156.885, 171.558] NaN NaN NaN 0
(171.558, 186.232] 1367.068837 1385.176569 1.324566 1
Mean diff_prcnt: 0.469021296461

pandas 0.15.1:

42 Chapter 6. API reference

wltp Documentation, Release 0.0.9-alpha.3

gened_mean_rpm heinz_mean_rpm diff_prcnt count
pmr
(9.973, 24.823] 2021.882193 2038.842442 0.838835 33
(24.823, 39.496] 2204.136804 2229.999526 1.173372 34
(39.496, 54.17] 1880.733341 1885.792807 0.269016 123
(54.17, 68.843] 1710.819917 1717.808457 0.408491 94
(68.843, 83.517] 1677.846860 1683.916224 0.361735 59
(83.517, 98.191] 1541.587174 1551.609661 0.650141 4
(98.191, 112.864] 1579.049392 1589.997331 0.693325 31
(112.864, 127.538] 1411.921405 1425.965019 0.994646 2
(127.538, 142.211] 1976.193317 1967.808440 -0.426102 1
(142.211, 156.885] NaN NaN NaN 0
(156.885, 171.558] NaN NaN NaN 0
(171.558, 186.232] 1954.662077 1937.426430 -0.889616 1
Mean diff_prcnt: 0.558773102894

test5a_n_mean__gear()
Check mean-rpm diff% with Heinz stays within some percent for all gears.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

n_mean python heinz diff%
gear
0 732.358286 804.656085 -9.925769
1 870.080494 1177.547512 -44.450903
2 1789.787609 1650.383967 6.520319
3 1921.271483 1761.172027 7.804359
4 1990.286402 1886.563262 5.401895
5 2138.445024 2112.552162 1.892950
6 2030.970322 1987.865039 2.228276

Not forcing class3b, honoring declared v_max & unladen_mass:

gear
0 735.143823 808.795812 -10.052865
1 799.834530 1139.979330 -47.027383
2 1598.773915 1582.431975 1.119054
3 1793.617644 1691.589756 5.768020
4 1883.863510 1796.957457 5.024360
5 2095.211754 2052.059948 2.430360
6 2033.663975 1990.344346 2.238421

test5b_n_mean__gear_transplanted()
Check mean-rpm diff% with Heinz stays within some percent for all gears.

Comparison history

Force class3b, Phase-1b-beta(ver <= 0.0.8, Aug-2014) with Heinz maxt gear-time=2sec:

n_mean python heinz diff%
gear
0 732.357001 804.656085 -9.926855
1 966.022039 1177.547512 -24.409425
2 1678.578373 1650.383967 1.616768
3 1791.644768 1761.172027 1.700642
4 1883.504933 1886.563262 0.119165
5 2099.218160 2112.552162 -0.320293
6 1985.732086 1987.865039 -0.096754

Not forcing class3b, honoring declared v_max & unladen_mass:

n_mean python heinz diff%
gear
0 735.077116 808.795812 -10.065886

6.5. Module: wltp.test.wltp_db_tests 43

wltp Documentation, Release 0.0.9-alpha.3

1 932.586982 1139.979330 -24.285307
2 1606.040896 1582.431975 1.379144
3 1721.141364 1691.589756 1.686708
4 1803.212699 1796.957457 0.370703
5 2053.822313 2052.059948 0.142138
6 1988.195381 1990.344346 -0.097482

wltp.test.wltp_db_tests._file_pairs(fname_glob)
Generates pairs of files to compare, skipping non-existent and those with mismatching #_of_rows.

Example:

>>> for (veh_num, df_g, df_h) in _file_pairs('wltp_db_vehicles-00*.csv')
pass

wltp.test.wltp_db_tests.aggregate_single_columns_means(gened_column,
heinz_column)

Runs experiments and aggregates mean-values from one column of each (gened, heinz) file-sets.

wltp.test.wltp_db_tests.driver_weight = 70
For calculating unladen_mass.

wltp.test.wltp_db_tests.vehicles_applicator(fname_glob, pair_func)
Applies the fun onto a pair of (generated, heinz) files for each tested-vehicle in the glob and appends results
to list, preffixed by veh_num.

Parameters pair_func – signature: func(veh_no, gened_df, heinz_df)–
>sequence_of_numbers

Returns a dataframe with the columns returned from the pair_func, row_indexed by veh_num

44 Chapter 6. API reference

CHAPTER 7

Changes

Contents

• Changes
– GTR version matrix
– Known deficiencies
– TODOs
– Releases

* v0.0.9-alpha.1, alpha.3 (1 Oct, X Noe 2014)
· Important/ incompatilble changes
· Changelog
· v0.0.9-alpha.3
· v0.0.9-alpha.2
· v0.0.9-alpha.1

* v0.0.8-alpha, 04-Aug-2014
* v0.0.7-alpha, 31-Jul-2014: 1st public
* v0.0.6-alpha, 5-Feb-2014
* v0.0.5-alpha, 18-Feb-2014
* v0.0.4.alpha, 18-Jan-2014
* v0.0.3_alpha, 22-Jan-2014
* v0.0.2_alpha, 7-Jan-2014
* v0.0.1, 6-Jan-2014: Alpha release
* v0.0.0, 11-Dec-2013: Inception stage

7.1 GTR version matrix

Given a version number MAJOR.MINOR.PATCH, the MAJOR part tracks the GTR phase implemented. The
following matrix shows these correspondences:

Release train GTR ver
0.x.x Till Aug 2014, Not very Precise with the till-that-day standard. (diffs explained below)
1.x.x After Nov 2014, phase 2b (TBD)

7.2 Known deficiencies

• (!) Driveability-rules not ordered as defined in the latest task-force meeting.

• (!) The driveability-rules when speeding down to a halt is broken, and human-drivers should improvise.

• (!) The n_min_drive is not calculated as defined in the latest task-force meeting, along with other recent
updates.

45

wltp Documentation, Release 0.0.9-alpha.3

• (!) The n_max is calculated for ALL GEARS, resulting in “clipped” velocity-profiles, leading to reduced
rpm’s for low-powered vehicles.

• Clutching-points and therefore engine-speed are very preliminary (ie rpm when starting from stop might be
< n_idle).

7.3 TODOs

• Add cmd-line front-end.

• Automatically calculate masses from H & L vehicles, and regression-curves from categories.

• wltp_db: Improve test-metrics with group-by classes/phases.

• model: Enhance model-preprocessing by interleaving “octapus” merging stacked-models between valida-
tion stages.

• model: finalize data-schema (renaming columns and adding name fields in major blocks).

• model/core: Accept units on all quantities.

• core: Move calculations as class-methods to provide for overriding certain parts of the algorithm.

• core: Support to provide and override arbitrary model-data, and ask for arbitrary output-ones by topologi-
cally sorting the graphs of the calculation-dependencies.

• build: Separate wltpdb tests as a separate, optional, plugin of this project (~650Mb size).

7.4 Releases

7.4.1 v0.0.9-alpha.1, alpha.3 (1 Oct, X Noe 2014)

This is practically the 2nd public releases, reworked in many parts, and much better documented and continuously
tested and build using TravisCI, BUT the arithmetic results produced are still identical to v0.0.7, so that the test-
cases and metrics still describe this core.

Important/incompatilble changes

• Code:

– package wltc –> wltp

– class Experiment –> Processor

• Model changes:

– /vehicle/mass –> (test_mass and unladen_mass)

– /cycle_run: If present, (some of) its columns override the calculation.

• Added tkUI and Excel front-ends.

Changelog

v0.0.9-alpha.3

Shared with LAT. * Use CONDA for running no TravisCI. * Improve ExcelRunner. * docs and metrics improv-
ments.

46 Chapter 7. Changes

wltp Documentation, Release 0.0.9-alpha.3

v0.0.9-alpha.2

• ui: Added Excel frontend.

• ui: Added desktop-UI proof-of-concept (wltp.tkui).

• metrics: Add diagrams auto-generated from test-metrics into generated site (at “Getting Involved” section).

v0.0.9-alpha.1

• Backported also to Python-2.7.

• model, core: Discriminate between Test mass from Unladen mass (optionally auto-calced by
driver_mass = 75(kg)).

• model, core: Calculate default resistance-coefficients from a regression-curve (the one found in Heinz-db).

• model, core: Possible to overide WLTP-Class, Target-V & Slope, Gears if present in the cycle_run table.

• model: Add NEDC cycle data, for facilitating comparisons.

• tests: Include sample-vehicles along with the distribution.

• tests: Speed-up tests by caching files to read and compare.

• docs: Considerable improvements, validate code in comments and docs with doctest.

• docs: Provide a http-link to the list of IPython front-ends in the project’s wiki.

• build: Use TravisCI as integration server, Coveralls.io as test-coverage service-providers.

• build: Not possible anymore to distribute it as .EXE; need a proper python-3 environment.

7.4.2 v0.0.8-alpha, 04-Aug-2014

• Documentation fixes.

7.4.3 v0.0.7-alpha, 31-Jul-2014: 1st public

Although it has already been used in various exercises, never made it out of Alpha state.

• Rename project to ‘wltp’.

• Switch license from AGPL –> EUPL (the same license assumed retrospectively for older version)

• Add wltp_db files.

• Unify instances & schemas in model.py.

• Possible to Build as standalone exe using cx_freeze.

• Preparations for PyPI/github distribution.

– Rename project to “wltp”.

– Prepare Sphinx documentation for http://readthedocs.org.

– Update setup.py

– Update project-coordinates (authors, etc)

7.4. Releases 47

http://readthedocs.org

wltp Documentation, Release 0.0.9-alpha.3

7.4.4 v0.0.6-alpha, 5-Feb-2014

• Make it build as standalone exe using cx_freeze.

• Possible to transplant base-gears and then apply on them driveability-rules.

• Embed Model –> Experiment to simplify client-code.

• Changes in the data-schema for facilitating conditional runs.

• More reverse-engineered comparisons with heinz’s data.

7.4.5 v0.0.5-alpha, 18-Feb-2014

• Many driveability-improvements found by trial-n-error comparing with Heinz’s.

• Changes in the data-schema for facilitating storing of tabular-data.

• Use Euro6 polynomial full_load_curve from Fontaras.

• Smooth-away INALID-GEARS.

• Make the plottings of comparisons of sample-vehicle with Heinz’results interactively report driveability-
rules.

• Also report GEARS_ORIG, RPM_NORM, P_AVAIL, RPM, GEARS_ORIG, RPM_NORM results.

7.4.6 v0.0.4.alpha, 18-Jan-2014

• Starting to compare with Heinz’s data - FOUND DISCREPANCIES IMPLTYING ERROR IN BASE
CALCS.

• Test-enhancements and code for comparing with older runs to track algo behavior.

• Calc ‘V_real’.

• Also report RPMS, P_REQ, DIRVEABILITY results.

• Make v_max optionally calculated from max_gear / gear_ratios.

• BUGFIX: in P_AVAIL 100% percents were mixed [0, 1] ratios!

• BUGFIX: make goodVehicle a function to avoid mutation side-effects.

• BUGFIX: add forgotten division on p_required Accel/3.6.

• BUGFIX: velocity-profile mistakenly rounded to integers!

• BUGFIX: v_max calculation based on n_rated (not 1.2 * n_rated).

• FIXME: get default_load_curve floats from Heinz-db.

• FIXME: what to to with INVALID-GEARS?

7.4.7 v0.0.3_alpha, 22-Jan-2014

• -Driveability rules not-implemented:

– missing some conditions for rule-f.

– no test-cases.

– No velocity_real.

– No preparation calculations (eg. vehicle test-mass).

– Still unchecked for correctness of results.

48 Chapter 7. Changes

wltp Documentation, Release 0.0.9-alpha.3

• -Pending Experiment tasks:

– FIXME: Apply rule(e) also for any initial/final gear (not just for i-1).

– FIXME: move V–0 into own gear.

– FIXME: move V–0 into own gear.

– FIXME: NOVATIVE rule: “Clutching gear-2 only when Decelerating.”.

– FIXME: What to do if no gear foudn for the combination of Power/Revs??

– NOTE: “interpratation” of specs for Gear-2

– NOTE: Rule(A) not needed inside x2 loop.

– NOTE: rule(b2): Applying it only on non-flats may leave gear for less than 3sec!

– NOTE: Rule(c) should be the last rule to run, outside x2 loop.

– NOTE: Rule(f): What if extra conditions unsatisfied? Allow shifting for 1 sec only??

– TODO: Construct a matrix of n_min_drive for all gears, including exceptions for gears 1 & 2.

– TODO: Prepend row for idle-gear in N_GEARS

– TODO: Rule(f) implement further constraints.

– TODO: Simplify V_real calc by avoiding multiply all.

7.4.8 v0.0.2_alpha, 7-Jan-2014

• -Still unchecked for correctness of results.

7.4.9 v0.0.1, 6-Jan-2014: Alpha release

• -Unchecked for correctness.

• Runs OK.

• Project with python-packages and test-cases.

• Tidied code.

• Selects appropriate classes.

• Detects and applies downscale.

• Interpreted and implemented the nonsensical specs concerning n_min engine-revolutions for gear-2 (Annex
2-3.2, p71).

• -Not implemented yet driveability rules.

• -Does not output real_velocity yet - inly gears.

7.4.10 v0.0.0, 11-Dec-2013: Inception stage

• Mostly setup.py work, README and help.

7.4. Releases 49

wltp Documentation, Release 0.0.9-alpha.3

50 Chapter 7. Changes

CHAPTER 8

Indices

8.1 Glossary

WLTP The Worldwide harmonised Light duty vehicles Test Procedure, a GRPE informal working group

UNECE The United Nations Economic Commission for Europe, which has assumed the steering role on the
WLTP.

GRPE UNECE Working party on Pollution and Energy - Transport Programme

GS Task-Force The Gear-shift Task-force of the GRPE. It is the team of automotive experts drafting the gear-
shifting strategy for vehicles running the WLTP cycles.

WLTC The family of pre-defined driving-cycles corresponding to vehicles with different PMR (Power to Mass
Ratio). Classes 1,2, 3a & 3b are split in 2, 4, 4 and 4 parts respectively.

Unladen mass UM or Curb weight, the weight of the vehicle in running order minus the mass of the driver.

Test mass TM, the representative weight of the vehicle used as input for the calculations of the simulation,
derived by interpolating between high and low values for the CO2-family of the vehicle.

Downscaling Reduction of the top-velocity of the original drive trace to be followed, to ensure that the vehicle
is not driven in an unduly high proportion of “full throttle”.

pandas-model The container of data that the gear-shift calculator consumes and produces. It is implemented
by wltp.pandel.Pandel as a mergeable stack of JSON-schema abiding trees of strings and numbers,
formed with sequences, dictionaries, pandas-instances and URI-references.

JSON-schema The JSON schema is an IETF draft that provides a contract for what JSON-data is required for a
given application and how to interact with it. JSON Schema is intended to define validation, documentation,
hyperlink navigation, and interaction control of JSON data. You can learn more about it from this excellent
guide, and experiment with this on-line validator.

JSON-pointer JSON Pointer(RFC 6901) defines a string syntax for identifying a specific value within a
JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML
world, but it is much simpler.

8.1.1 Index

51

https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179
http://json-schema.org/
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://spacetelescope.github.io/understanding-json-schema/
http://spacetelescope.github.io/understanding-json-schema/
http://www.jsonschema.net/
https://tools.ietf.org/html/rfc6901.html

wltp Documentation, Release 0.0.9-alpha.3

52 Chapter 8. Indices

CHAPTER 9

Glossary

WLTP The Worldwide harmonised Light duty vehicles Test Procedure, a GRPE informal working group

UNECE The United Nations Economic Commission for Europe, which has assumed the steering role on the
WLTP.

GRPE UNECE Working party on Pollution and Energy - Transport Programme

GS Task-Force The Gear-shift Task-force of the GRPE. It is the team of automotive experts drafting the gear-
shifting strategy for vehicles running the WLTP cycles.

WLTC The family of pre-defined driving-cycles corresponding to vehicles with different PMR. Classes 1,2, 3a
& 3b are split in 2, 4, 4 and 4 parts respectively.

Unladen mass UM or Curb weight, the weight of the vehicle in running order minus the mass of the driver.

Test mass TM, the representative weight of the vehicle used as input for the calculations of the simulation,
derived by interpolating between high and low values for the CO2-family of the vehicle.

Downscaling Reduction of the top-velocity of the original drive trace to be followed, to ensure that the vehicle
is not driven in an unduly high proportion of “full throttle”.

pandas-model The container of data that the gear-shift calculator consumes and produces. It is implemented
by wltp.pandel.Pandel as a mergeable stack of JSON-schema abiding trees of strings and numbers,
formed with sequences, dictionaries, pandas-instances and URI-references.

JSON-schema The JSON schema is an IETF draft that provides a contract for what JSON-data is required for a
given application and how to interact with it. JSON Schema is intended to define validation, documentation,
hyperlink navigation, and interaction control of JSON data. You can learn more about it from this excellent
guide, and experiment with this on-line validator.

JSON-pointer JSON Pointer(RFC 6901) defines a string syntax for identifying a specific value within a
JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML
world, but it is much simpler.

53

https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179
http://json-schema.org/
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://spacetelescope.github.io/understanding-json-schema/
http://spacetelescope.github.io/understanding-json-schema/
http://www.jsonschema.net/
https://tools.ietf.org/html/rfc6901.html

wltp Documentation, Release 0.0.9-alpha.3

54 Chapter 9. Glossary

Python Module Index

w
wltp.experiment, 25
wltp.model, 28
wltp.pandel, 30
wltp.test.samples_db_tests, 37
wltp.test.wltp_db_tests, 38

55

wltp Documentation, Release 0.0.9-alpha.3

56 Python Module Index

Index

Symbols
__init__() (wltp.experiment.Experiment method), 26
__init__() (wltp.pandel.Pandel method), 34
__metaclass__ (wltp.pandel.Pandel attribute), 34
__new__() (wltp.pandel.ModelOperations static

method), 30
_clone_and_merge_submodels() (wltp.pandel.Pandel

method), 34
_curate() (wltp.pandel.Pandel method), 34
_curate_funcs (wltp.pandel.Pandel attribute), 33
_errored (wltp.pandel.Pandel attribute), 33
_file_pairs() (in module wltp.test.wltp_db_tests), 44
_get_json_schema() (wltp.pandel.Pandel method), 34
_get_model_base() (in module wltp.model), 28
_get_model_schema() (in module wltp.model), 28
_get_wltc_data() (in module wltp.model), 28
_get_wltc_schema() (in module wltp.model), 28
_global_cntxt (wltp.pandel.Pandel attribute), 33
_merge() (wltp.pandel.Pandel method), 34
_prevalidate() (wltp.pandel.Pandel method), 34
_read_branch() (wltp.pandel.Pandel method), 34
_resolve() (wltp.pandel.Pandel method), 34
_select_context() (wltp.pandel.Pandel method), 34
_submodel_tuples (wltp.pandel.Pandel attribute), 32
_validate() (wltp.pandel.Pandel method), 34
_write_branch() (wltp.pandel.Pandel method), 34

A
add_submodel() (wltp.pandel.Pandel method), 34
aggregate_single_columns_means() (in module

wltp.test.wltp_db_tests), 44
applyDriveabilityRules() (in module wltp.experiment),

26

B
build() (wltp.pandel.Pandel method), 35
build_iter() (wltp.pandel.Pandel method), 35

C
calcDownscaleFactor() (in module wltp.experiment),

26
calcEngineRevs_required() (in module

wltp.experiment), 26
calcPower_available() (in module wltp.experiment), 26

calcPower_required() (in module wltp.experiment), 26

D
decideClass() (in module wltp.experiment), 27
DISTUTILS_DEBUG, 7
downscaleCycle() (in module wltp.experiment), 27
Downscaling, 51, 53
driver_weight (in module wltp.test.samples_db_tests),

38
driver_weight (in module wltp.test.wltp_db_tests), 44

E
environment variable

DISTUTILS_DEBUG, 7
PATH, 3, 4, 7, 11, 24

Experiment (class in wltp.experiment), 26
ExperimentSampleVehs (class in

wltp.test.samples_db_tests), 37

G
gearsregex() (in module wltp.experiment), 27
get_class_part_names() (in module wltp.model), 28
get_class_parts_limits() (in module wltp.model), 28
get_class_pmr_limits() (in module wltp.model), 29
get_model_schema() (in module wltp.model), 29
GRPE, 51, 53
GS Task-Force, 51, 53

J
JSON-pointer, 51, 53
JSON-schema, 51, 53
jsonpointer_parts() (in module wltp.pandel), 36

M
merge() (in module wltp.model), 29
mod_global_operations() (wltp.pandel.Pandel method),

35
model (wltp.pandel.Pandel attribute), 32
ModelOperations (class in wltp.pandel), 30

P
pandas-model, 51, 53
Pandel (class in wltp.pandel), 30
PandelVisitor (class in wltp.pandel), 35

57

wltp Documentation, Release 0.0.9-alpha.3

PATH, 3, 4, 7, 11, 24
PathMaps (class in wltp.pandel), 36
possibleGears_byEngineRevs() (in module

wltp.experiment), 27
possibleGears_byPower() (in module wltp.experiment),

27

R
resolve_jsonpointer() (in module wltp.pandel), 37
RFC

RFC 6901, 51, 53
rule_a() (in module wltp.experiment), 27
rule_c2() (in module wltp.experiment), 27
run() (wltp.experiment.Experiment method), 26
run_cycle() (in module wltp.experiment), 27

S
set_jsonpointer() (in module wltp.pandel), 37
step_rule_b1() (in module wltp.experiment), 28
step_rule_b2() (in module wltp.experiment), 28
step_rule_c1() (in module wltp.experiment), 28
step_rule_d() (in module wltp.experiment), 28
step_rule_e() (in module wltp.experiment), 28
step_rule_f() (in module wltp.experiment), 28
step_rule_g() (in module wltp.experiment), 28

T
Test mass, 51, 53
test1_AvgRPMs() (wltp.test.samples_db_tests.ExperimentSampleVehs

method), 37
test1_Downscale() (wltp.test.wltp_db_tests.WltpDbTests

method), 38
test1_PMRatio() (wltp.test.samples_db_tests.ExperimentSampleVehs

method), 37
test2a_gear_diffs() (wltp.test.wltp_db_tests.WltpDbTests

method), 38
test2b_gear_diffs_transplanted()

(wltp.test.wltp_db_tests.WltpDbTests
method), 39

test3a_n_mean() (wltp.test.wltp_db_tests.WltpDbTests
method), 39

test3b_n_mean_transplanted()
(wltp.test.wltp_db_tests.WltpDbTests
method), 40

test4a_n_mean__PMR()
(wltp.test.wltp_db_tests.WltpDbTests
method), 40

test4b_n_mean__PMR_transplanted()
(wltp.test.wltp_db_tests.WltpDbTests
method), 42

test5a_n_mean__gear()
(wltp.test.wltp_db_tests.WltpDbTests
method), 43

test5b_n_mean__gear_transplanted()
(wltp.test.wltp_db_tests.WltpDbTests
method), 43

U
UNECE, 51, 53
unified_contexts (wltp.pandel.Pandel attribute), 35
Unladen mass, 51, 53

V
validate_model() (in module wltp.model), 29
vehicles_applicator() (in module

wltp.test.wltp_db_tests), 44

W
WLTC, 51, 53
WLTP, 51, 53
wltp.experiment (module), 25
wltp.model (module), 28
wltp.pandel (module), 30
wltp.test.samples_db_tests (module), 37
wltp.test.wltp_db_tests (module), 38
WltpDbTests (class in wltp.test.wltp_db_tests), 38

58 Index

	Introduction
	Overview
	Quick-start
	Discussion

	Install
	Older versions
	Installing from sources
	Project files and folders
	Discussion

	Usage
	Cmd-line usage
	GUI usage
	Excel usage
	Python usage
	IPython notebook usage
	Discussion

	Getting Involved
	Sources & Dependencies
	Development procedure
	Specs & Algorithm
	Tests, Metrics & Reports
	Development team
	Discussion

	Frequently Asked Questions
	General
	Technical

	API reference
	Module: wltp.experiment
	Module: wltp.model
	Module: wltp.pandel
	Module: wltp.test.samples_db_tests
	Module: wltp.test.wltp_db_tests

	Changes
	GTR version matrix
	Known deficiencies
	TODOs
	Releases

	Indices
	Glossary

	Glossary
	Python Module Index

