

 Navigation

 	
 index

 	
 next |

 	wltp 0.0.9-alpha.3 documentation

wltp gear-shifts calculator

[image: Development Status] [https://pypi.python.org/pypi/wltp/] [image: Integration-build status] [https://travis-ci.org/ankostis/wltp/builds] [image: cover-status] [https://coveralls.io/r/ankostis/wltp?branch=master] [image: Documentation status] [https://readthedocs.org/builds/wltp/] [image: Latest Version in PyPI] [https://pypi.python.org/pypi/wltp/] [image: Downloads] [https://pypi.python.org/pypi/wltp/] [image: Issues count] [https://github.com/ankostis/wltp/issues]

	Release:	0.0.9-alpha.3

	Documentation:	https://wltp.readthedocs.org/

	Source:	https://github.com/ankostis/wltp

	PyPI repo:	https://pypi.python.org/pypi/wltp

	Keywords:	UNECE, automotive, car, cars, driving, engine, fuel-consumption, gears, gearshifs,
rpm, simulation, simulator, standard, vehicle, vehicles, wltc

	Copyright:	2013-2014 European Commission (JRC-IET [http://iet.jrc.ec.europa.eu/])

	License:	EUPL 1.1+ [https://joinup.ec.europa.eu/software/page/eupl]

The wltp is a python package that calculates the gear-shifts of Light-duty vehicles running the WLTP
driving-cycles, according to UNECE‘s GTR draft.

[image: _images/wltc_class3b.png]
Figure 1: WLTP cycle for class-3b Vehicles

Attention

This project is still in alpha stage. Its results are not
considered “correct”, and official approval procedures should not rely on them.
Some of the known deficiencies are described in these places:

	In the Changes.

	Presented in the diagrams of the Tests, Metrics & Reports section.

	Imprinted in the wltp_db_tests test-case
(automatically comparared with a pre-determined set of vehicles from Heinz-db on each build)
Currently, mean rpm differ from Heinz-db < 0.5% and gears diff < 5% for a 1800-step class-3 cycle.

	1. Introduction
	1.1. Overview

	1.2. Quick-start

	1.3. Discussion

	2. Install
	2.1. Older versions

	2.2. Installing from sources

	2.3. Project files and folders

	2.4. Discussion

	3. Usage
	3.1. Cmd-line usage

	3.2. GUI usage

	3.3. Excel usage

	3.4. Python usage

	3.5. IPython notebook usage
	3.5.1. Requirements

	3.5.2. Instructions

	3.6. Discussion

	4. Getting Involved
	4.1. Sources & Dependencies

	4.2. Development procedure

	4.3. Specs & Algorithm
	4.3.1. Cycles

	4.4. Tests, Metrics & Reports
	4.4.1. Mean Engine-speed vs PMR

	4.4.2. Mean Engine-speed vs Gears

	4.5. Development team

	4.6. Discussion

	5. Frequently Asked Questions
	5.1. General
	5.1.1. Who is behind this? Who to contact?

	5.1.2. What is the status of the project? Is it “official”?

	5.1.3. What is the roadmap for this project?

	5.1.4. Can I copy/extend it? What is its License, in practical terms?

	5.2. Technical
	5.2.1. I followed the instructions but i still cannot install/run/do X. What now?

	5.2.2. I do not have python / cannot install it. Is it possible to try a demo?

	5.2.3. Discussion

	6. API reference
	6.1. Module: wltp.experiment

	6.2. Module: wltp.model

	6.3. Module: wltp.pandel

	6.4. Module: wltp.test.samples_db_tests

	6.5. Module: wltp.test.wltp_db_tests

	7. Changes
	7.1. GTR version matrix

	7.2. Known deficiencies

	7.3. TODOs

	7.4. Releases
	7.4.1. v0.0.9-alpha.1, alpha.3 (1 Oct, X Noe 2014)
	7.4.1.1. Important/incompatilble changes

	7.4.1.2. Changelog
	7.4.1.2.1. v0.0.9-alpha.3

	7.4.1.2.2. v0.0.9-alpha.2

	7.4.1.2.3. v0.0.9-alpha.1

	7.4.2. v0.0.8-alpha, 04-Aug-2014

	7.4.3. v0.0.7-alpha, 31-Jul-2014: 1st public

	7.4.4. v0.0.6-alpha, 5-Feb-2014

	7.4.5. v0.0.5-alpha, 18-Feb-2014

	7.4.6. v0.0.4.alpha, 18-Jan-2014

	7.4.7. v0.0.3_alpha, 22-Jan-2014

	7.4.8. v0.0.2_alpha, 7-Jan-2014

	7.4.9. v0.0.1, 6-Jan-2014: Alpha release

	7.4.10. v0.0.0, 11-Dec-2013: Inception stage

	8. Indices
	8.1. Glossary
	8.1.1. Index

Glossary

	WLTP

	The Worldwide harmonised Light duty vehicles Test Procedure [https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179],
a GRPE informal working group

	UNECE

	The United Nations Economic Commission for Europe, which has assumed the steering role
on the WLTP.

	GRPE

	UNECE Working party on Pollution and Energy - Transport Programme

	GS Task-Force

	The Gear-shift Task-force of the GRPE. It is the team of automotive experts drafting
the gear-shifting strategy for vehicles running the WLTP cycles.

	WLTC

	The family of pre-defined driving-cycles corresponding to vehicles with different
PMR. Classes 1,2, 3a & 3b are split in 2, 4, 4 and 4 parts respectively.

	Unladen mass

	UM or Curb weight, the weight of the vehicle in running order minus
the mass of the driver.

	Test mass

	TM, the representative weight of the vehicle used as input for the calculations of the simulation,
derived by interpolating between high and low values for the CO2-family of the vehicle.

	Downscaling

	Reduction of the top-velocity of the original drive trace to be followed, to ensure that the vehicle
is not driven in an unduly high proportion of “full throttle”.

	pandas-model

	The container of data that the gear-shift calculator consumes and produces.
It is implemented by wltp.pandel.Pandel as a mergeable stack of JSON-schema abiding trees of
strings and numbers, formed with sequences, dictionaries, pandas [http://pandas.pydata.org/pandas-docs/dev/index.html#module-pandas]-instances and URI-references.

	JSON-schema

	The JSON schema [http://json-schema.org/] is an IETF draft [http://tools.ietf.org/html/draft-zyp-json-schema-03]
that provides a contract for what JSON-data is required for a given application and how to interact
with it. JSON Schema is intended to define validation, documentation, hyperlink navigation, and
interaction control of JSON data.
You can learn more about it from this excellent guide [http://spacetelescope.github.io/understanding-json-schema/],
and experiment with this on-line validator [http://www.jsonschema.net/].

	JSON-pointer

	JSON Pointer(RFC 6901 [http://tools.ietf.org/html/rfc6901.html]) defines a string syntax for identifying a specific value within
a JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML world,
but it is much simpler.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

1. Introduction

1.1. Overview

The calculator accepts as input the vehicle’s technical data, along with parameters for modifying the execution
of the WLTC cycle, and it then spits-out the gear-shifts of the vehicle, the attained speed-profile,
and any warnings. It does not calculate any CO2 emissions.

An “execution” or a “run” of an experiment is depicted in the following diagram:

 .---------------------. .----------------------------.
 ; Input-Model ; ; Output-Model ;
 ;---------------------; ;----------------------------;
 ; +--vehicle ; ____________ ; +---... ;
 ; +--params ; | | ; +--cycle_run: ;
 ; +--wltc_data ; ==> | Experiment | ==> ; t v_class gear ... ;
 ; ; |____________| ; -------------------- ;
 ; ; ; 00 0.0 1 ;
 ; ; ; 01 1.3 1 ;
 ; ; ; 02 5.5 1 ;
 ; ; ; ... ;
'---------------------' '----------------------------.

The Input & Output Data are instances of pandas-model, trees of strings and numbers, assembled with:

	sequences,

	dictionaries,

	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame],

	pandas.Series [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.Series.html#pandas.Series], and

	URI-references to other model-trees.

1.2. Quick-start

On Windows/OS X, it is recommended to use one of the following “scientific” python-distributions,
as they already include the native libraries and can install without administrative priviledges:

	WinPython [http://winpython.github.io/] (Windows only),

	Anaconda [http://docs.continuum.io/anaconda/],

	Canopy [https://www.enthought.com/products/canopy/],

Assuming you have a working python-environment, open a command-shell,
(in Windows use cmd.exe BUT ensure python.exe is in its PATH),
you can try the following commands:

	Install:	$ pip install wltp --pre
$ wltp --winmenus ## Adds StartMenu-items, Windows only.

See: Install

	Cmd-line:	$ wltp --version
0.0.9-alpha.3

$ wltp --help
...

See: Cmd-line usage

	GUI:	$ wltp --gui` ## For exploring model, but not ready yet.

	Excel:	$ wltp --excelrun ## Windows & OS X only

See: Excel usage

	Python-code:	from wltp.experiment import Experiment

input_model = { ... } ## See also "Python Usage" for model contents.
exp = Experiment(input_model)
output_model = exp.run()
print('Results: \n%s' % output_model['cycle_run'])

See: Python usage

Tip

The commands beginning with $, above, imply a Unix like operating system with a POSIX shell
(Linux, OS X). Although the commands are simple and easy to translate in its Windows counterparts,
it would be worthwile to install Cygwin [https://www.cygwin.com/] to get the same environment on Windows.
If you choose to do that, include also the following packages in the Cygwin‘s installation wizard:

* git, git-completion
* make, zip, unzip, bzip2
* openssh, curl, wget

But do not install/rely on cygwin’s outdated python environment.

Tip

To install python, you can try the free (as in beer) distribution
Anaconda [http://docs.continuum.io/anaconda/pkg-docs.html] for Windows and OS X, or
the totally free WinPython [http://winpython.sourceforge.net/] distribution, but only for Windows:

	For Anaconda you may need to install project’s dependencies manually (see setup.py)
using conda.

	The most recent version of WinPython (python-3.4) although it has just
changed maintainer [http://sourceforge.net/projects/stonebig.u/files/],
it remains a higly active project, and it can even compile native libraries using an installations of
Visual Studio, if available
(required for instance when upgrading numpy/scipy, pandas or matplotlib with pip).

You must also Register your WinPython installation and
add your installation into PATH (see Frequently Asked Questions).
To register it, go to Start menu ‣ All Programs ‣ WinPython ‣ WinPython ControlPanel, and then
Options ‣ Register Distribution .

1.3. Discussion

Please enable JavaScript to view the comments powered by Disqus.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

2. Install

Current 0.0.9-alpha.3 runs on Python-2.7+ and Python-3.3+ but 3.3+ is the preferred one,
i.e, the desktop UI runs only with it.
It is distributed on Wheels [https://pypi.python.org/pypi/wheel].

Before installing it, make sure that there are no older versions left over.
So run this command until you cannot find any project installed:

$ pip uninstall wltp ## Use `pip3` if both python-2 & 3 are in PATH.

You can install the project directly from the PyPi repo [https://pypi.python.org/pypi/wltp] the “standard” way,
by typing the pip in the console:

$ pip install wltp --pre

	If you want to install a pre-release version (the version-string is not plain numbers, but
ends with alpha, beta.2 or something else), use additionally --pre.

	If you want to upgrade an existing instalation along with all its dependencies,
add also --upgrade (or -U equivalently), but then the build might take some
considerable time to finish. Also there is the possibility the upgraded libraries might break
existing programs(!) so use it with caution, or from within a virtualenv (isolated Python environment) [http://docs.python-guide.org/en/latest/dev/virtualenvs/].

	To install it for different Python environments, repeat the procedure using
the appropriate python.exe interpreter for each environment.

	
Tip

To debug installation problems, you can export a non-empty DISTUTILS_DEBUG
and distutils will print detailed information about what it is doing and/or
print the whole command line when an external program (like a C compiler) fails.

After installation, it is important that you check which version is visible in your PATH:

$ wltp --version
0.0.9-alpha.3

To install for different Python versions, repeat the procedure for every required version.

2.1. Older versions

An additional purpose of the versioning schema of the project is to track which specific version
of the GTR it implements.
Given a version number MAJOR.MINOR.PATCH, the MAJOR part tracks the GTR phase implemented.
See the “GTR version matrix” section in Changes for the mapping of MAJOR-numbers to GTR versions.

To install an older version issue the console command:

$ pip install wltp=1.1.1 ## Use `--pre` if version-string has a build-suffix.

If you have another version already installed, you have to use --ignore-installed (or -I).
For using the specific version, check this (untested)
stackoverflow question [http://stackoverflow.com/questions/6445167/force-python-to-use-an-older-version-of-module-than-what-i-have-installed-now] .

Of course it is better to install each version in a separate virtualenv (isolated Python environment) [http://docs.python-guide.org/en/latest/dev/virtualenvs/] and shy away from all this.

2.2. Installing from sources

If you download the sources you have more options for installation.
There are various methods to get hold of them:

	Download the source distribution from PyPi repo [https://pypi.python.org/pypi/wltp].

	Download a release-snapshot from github [https://github.com/ankostis/wltp/releases]

	Clone the git-repository at github.

Assuming you have a working installation of git [http://git-scm.com/]
you can fetch and install the latest version of the project with the following series of commands:

$ git clone "https://github.com/ankostis/wltp.git" wltp.git
$ cd wltp.git
$ python setup.py install ## Use `python3` if both python-2 & 3 installed.

When working with sources, you need to have installed all libraries that the project depends on:

$ pip install -r requirements/execution.txt .

The previous command installs a “snapshot” of the project as it is found in the sources.
If you wish to link the project’s sources with your python environment, install the project
in development mode [http://pythonhosted.org/setuptools/setuptools.html#development-mode]:

$ python setup.py develop

Note

This last command installs any missing dependencies inside the project-folder.

2.3. Project files and folders

The files and folders of the project are listed below:

+--wltp/ ## (package) The python-code of the calculator
| +--cycles/ ## (package) The python-code for the WLTC data
| +--test/ ## (package) Test-cases and the wltp_db
| +--model ## (module) Describes the data and their schema for the calculation
| +--experiment ## (module) The calculator
| +--plots ## (module) Diagram-plotting code and utilities
+--docs/ ## Documentation folder
| +--pyplots/ ## (scripts) Plot the metric diagrams embeded in the README
+--devtools/ ## (scripts) Preprocessing of WLTC data on GTR and the wltp_db
| +--run_tests.sh ## (script) Executes all TestCases
+--wltp ## (script) The cmd-line entry-point script for the calculator
+--setup.py ## (script) The entry point for `setuptools`, installing, testing, etc
+--requirements/ ## (txt-files) Various pip-dependencies for tools.
+--README.rst
+--CHANGES.rst
+--LICENSE.txt

2.4. Discussion

Please enable JavaScript to view the comments powered by Disqus.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

3. Usage

3.1. Cmd-line usage

Warning

Not implemented in yet.

The command-line usage below requires the Python environment to be installed, and provides for
executing an experiment directly from the OS’s shell (i.e. cmd in windows or bash in POSIX),
and in a single command. To have precise control over the inputs and outputs
(i.e. experiments in a “batch” and/or in a design of experiments)
you have to run the experiments using the API python, as explained below.

The entry-point script is called wltp, and it must have been placed in your PATH
during installation. This script can construct a model by reading input-data
from multiple files and/or overriding specific single-value items. Conversely,
it can output multiple parts of the resulting-model into files.

To get help for this script, use the following commands:

$ wltp --help ## to get generic help for cmd-line syntax
$ wltcmdp.py -M vehicle/full_load_curve ## to get help for specific model-paths

and then, assuming vehicle.csv is a CSV file with the vehicle parameters
for which you want to override the n_idle only, run the following:

$ wltp -v \
 -I vehicle.csv file_frmt=SERIES model_path=params header@=None \
 -m vehicle/n_idle:=850 \
 -O cycle.csv model_path=cycle_run

3.2. GUI usage

Attention

Desktop UI requires Python 3!

For a quick-‘n-dirty method to explore the structure of the model-tree and run an experiment,
just run:

$ wltp --gui

3.3. Excel usage

Attention

Excel-integration requires Python 3 and Windows or OS X!

In Windows and OS X you may utilize the excellent xlwings [http://xlwings.org/quickstart/] library
to use Excel files for providing input and output to the experiment.

To create the necessary template-files in your current-directory you should enter:

$ wltp --excel

You could type instead wltp --excel file_path to specify a different destination path.

In windows/OS X you can type wltp --excelrun and the files will be created in your home-directory
and the excel will open them in one-shot.

All the above commands creates two files:

	wltp_excel_runner.xlsm

	The python-enabled excel-file where input and output data are written, as seen in the screenshot below:

[image: Screenshot of the `wltp_excel_runner.xlsm` file.]
After opening it the first tie, enable the macros on the workbook, select the python-code at the left and click
the Run Selection as Pyhon button; one sheet per vehicle should be created.

The excel-file contains additionally appropriate VBA modules allowing you to invoke Python code
present in selected cells with a click of a button, and python-functions declared in the python-script, below,
using the mypy namespace.

To add more input-columns, you need to set as column Headers the json-pointers path of the desired
model item (see Python usage below,).

	wltp_excel_runner.py

	Utility python functions used by the above xls-file for running a batch of experiments.

The particular functions included reads multiple vehicles from the input table with various
vehicle characteristics and/or experiment parameters, and then it adds a new worksheet containing
the cycle-run of each vehicle .
Of course you can edit it to further fit your needs.

Note

You may reverse the procedure described above and run the python-script instead.
The script will open the excel-file, run the experiments and add the new sheets, but in case any errors occur,
this time you can debug them, if you had executed the script through LiClipse, or IPython!

Some general notes regarding the python-code from excel-cells:

	On each invocation, the predefined VBA module pandalon executes a dynamically generated python-script file
in the same folder where the excel-file resides, which, among others, imports the “sister” python-script file.
You can read & modify the sister python-script to import libraries such as ‘numpy’ and ‘pandas’,
or pre-define utility python functions.

	The name of the sister python-script is automatically calculated from the name of the Excel-file,
and it must be valid as a python module-name. Therefore do not use non-alphanumeric characters such as
spaces(`), dashes(-) and dots(.`) on the Excel-file.

	On errors, a log-file is written in the same folder where the excel-file resides,
for as long as the message-box is visible, and it is deleted automatically after you click ‘ok’!

	Read http://docs.xlwings.org/quickstart.html

3.4. Python usage

Example python REPL example-commands are given below
that setup and run an experiment.

First run python or ipython and try to import the project to check its version:

>>> import wltp

>>> wltp.__version__ ## Check version once more.
'0.0.9-alpha.3'

>>> wltp.__file__ ## To check where it was installed.
/usr/local/lib/site-package/wltp-...

If everything works, create the pandas-model that will hold the input-data (strings and numbers)
of the experiment. You can assemble the model-tree by the use of:

	sequences,

	dictionaries,

	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame],

	pandas.Series [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.Series.html#pandas.Series], and

	URI-references to other model-trees.

For instance:

>>> from wltp import model
>>> from wltp.experiment import Experiment
>>> from collections import OrderedDict as odic ## It is handy to preserve keys-order.

>>> mdl = odic(
... vehicle = odic(
... unladen_mass = 1430,
... test_mass = 1500,
... v_max = 195,
... p_rated = 100,
... n_rated = 5450,
... n_idle = 950,
... n_min = None, ## Manufacturers my overridde it
... gear_ratios = [120.5, 75, 50, 43, 37, 32],
... resistance_coeffs = [100, 0.5, 0.04],
...)
...)

For information on the accepted model-data, check its JSON-schema:

>>> model.json_dumps(model.model_schema(), indent=2)
{
 "properties": {
 "params": {
 "properties": {
 "f_n_min_gear2": {
 "description": "Gear-2 is invalid when N :< f_n_min_gear2 * n_idle.",
 "type": [
 "number",
 "null"
],
 "default": 0.9
 },
 "v_stopped_threshold": {
 "description": "Velocity (Km/h) under which (<=) to idle gear-shift (Annex 2-3.3, p71).",
 "type": [
...

You then have to feed this model-tree to the Experiment
constructor. Internally the Pandel resolves URIs, fills-in default values and
validates the data based on the project’s pre-defined JSON-schema:

>>> processor = Experiment(mdl) ## Fills-in defaults and Validates model.

Assuming validation passes without errors, you can now inspect the defaulted-model
before running the experiment:

>>> mdl = processor.model ## Returns the validated model with filled-in defaults.
>>> sorted(mdl) ## The "defaulted" model now includes the `params` branch.
['params', 'vehicle']
>>> 'full_load_curve' in mdl['vehicle'] ## A default wot was also provided in the `vehicle`.
True

Now you can run the experiment:

>>> mdl = processor.run() ## Runs experiment and augments the model with results.
>>> sorted(mdl) ## Print the top-branches of the "augmented" model.
['cycle_run', 'params', 'vehicle']

To access the time-based cycle-results it is better to use a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html#pandas.DataFrame]:

>>> import pandas as pd
>>> df = pd.DataFrame(mdl['cycle_run']); df.index.name = 't'
>>> df.shape ## ROWS(time-steps) X COLUMNS.
(1801, 11)
>>> df.columns
Index(['v_class', 'v_target', 'clutch', 'gears_orig', 'gears', 'v_real', 'p_available', 'p_required', 'rpm', 'rpm_norm', 'driveability'], dtype='object')
>>> 'Mean engine_speed: %s' % df.rpm.mean()
'Mean engine_speed: 1917.0407829'
>>> df.describe()
 v_class v_target clutch gears_orig gears \
count 1801.000000 1801.000000 1801 1801.000000 1801.000000
mean 46.506718 46.506718 0.0660744 3.794003 3.683509
std 36.119280 36.119280 0.2484811 2.278959 2.278108
...

 v_real p_available p_required rpm rpm_norm
count 1801.000000 1801.000000 1801.000000 1801.000000 1801.000000
mean 50.356222 28.846639 4.991915 1917.040783 0.214898
std 32.336908 15.833262 12.139823 878.139758 0.195142
...

>>> processor.driveability_report()
...
 12: (a: X-->0)
 13: g1: Revolutions too low!
 14: g1: Revolutions too low!
...
 30: (b2(2): 5-->4)
...
 38: (c1: 4-->3)
 39: (c1: 4-->3)
 40: Rule e or g missed downshift(40: 4-->3) in acceleration?
...
 42: Rule e or g missed downshift(42: 3-->2) in acceleration?
...

You can export the cycle-run results in a CSV-file with the following pandas command:

>>> df.to_csv('cycle_run.csv')

For more examples, download the sources and check the test-cases
found under the /wltp/test/ folder.

3.5. IPython notebook usage

The list of IPython notebooks for wltp is maintained at the wiki [https://github.com/ankostis/wltp/wiki]
of the project.

3.5.1. Requirements

In order to run them interactively, ensure that the following requirements are satisfied:

	A ipython-notebook server [http://ipython.org/notebook.html] >= v2.x.x is installed for python-3,
it is up, and running.

	The wltp is installed on your system (see Install above).

3.5.2. Instructions

	Visit each notebook from the wiki-list that you wish to run and download it as ipynb file
from the menu (File|Download as...|IPython Notebook(.ipynb)).

	Locate the downloaded file with your file-browser and drag n’ drop it on the landing page
of your notebook’s server (the one with the folder-list).

Enjoy!

3.6. Discussion

Please enable JavaScript to view the comments powered by Disqus.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

4. Getting Involved

This project is hosted in github.
To provide feedback about bugs and errors or questions and requests for enhancements,
use github’s Issue-tracker [https://github.com/ankostis/wltp/issues].

4.1. Sources & Dependencies

To get involved with development, you need a POSIX environment to fully build it
(Linux, OSX or Cygwin on Windows).

First you need to download the latest sources:

$ git clone https://github.com/ankostis/wltp.git wltp.git
$ cd wltp.git

Virtualenv

You may choose to work in a virtualenv (isolated Python environment) [http://docs.python-guide.org/en/latest/dev/virtualenvs/],
to install dependency libraries isolated from system’s ones, and/or without admin-rights
(this is recommended for Linux/Mac OS).

Attention

If you decide to reuse stystem-installed packages using --system-site-packages
with virtualenv <= 1.11.6
(to avoid, for instance, having to reinstall numpy and pandas that require native-libraries)
you may be bitten by bug #461 [https://github.com/pypa/virtualenv/issues/461] which
prevents you from upgrading any of the pre-installed packages with pip.

Liclipse IDE

Within the sources there are two sample files for the comprehensive
LiClipse IDE [https://brainwy.github.io/liclipse/]:

	eclipse.project

	eclipse.pydevproject

Remove the eclipse prefix, (but leave the dot()) and import it as “existing project” from
Eclipse’s File menu.

Another issue is caused due to the fact that LiClipse contains its own implementation of Git, EGit,
which badly interacts with unix symbolic-links, such as the docs/docs, and it detects
working-directory changes even after a fresh checkout. To workaround this, Right-click on the above file
Properties ‣ Team ‣ Advanced ‣ Assume Unchanged

Then you can install all project’s dependencies in `development mode using the setup.py script:

$ python setup.py --help ## Get help for this script.
Common commands: (see '--help-commands' for more)

 setup.py build will build the package underneath 'build/'
 setup.py install will install the package

Global options:
 --verbose (-v) run verbosely (default)
 --quiet (-q) run quietly (turns verbosity off)
 --dry-run (-n) don't actually do anything
...

$ python setup.py develop ## Also installs dependencies into project's folder.
$ python setup.py build ## Check that the project indeed builds ok.

You should now run the test-cases (see ref:metrics, below) to check
that the sources are in good shape:

$ python setup.py test

Note

The above commands installed the dependencies inside the project folder and
for the virtual-environment. That is why all build and testing actions have to go through
python setup.py some_cmd.

If you are dealing with installation problems and/or you want to permantly install dependant packages,
you have to deactivate the virtual-environment and start installing them into your base
python environment:

$ deactivate
$ python setup.py develop

or even try the more permanent installation-mode:

$ python setup.py install # May require admin-rights

4.2. Development procedure

For submitting code, use UTF-8 everywhere, unix-eol(LF) and set git --config core.autocrlf = input.

The typical development procedure is like this:

	Modify the sources in small, isolated and well-defined changes, i.e.
adding a single feature, or fixing a specific bug.

	Add test-cases “proving” your code.

	Rerun all test-cases to ensure that you didn’t break anything,
and check their coverage remain above 80%:

$ python setup.py nosetests --with-coverage --cover-package wltp.model,wltp.experiment --cover-min-percentage=80

Tip

You can enter just: python setup.py test_all instead of the above cmd-line
since it has been aliased in the setup.cfg file.
Check this file for more example commands to use during development.

	If you made a rather important modification, update also the Changes file and/or
other documents (i.e. README.rst). To see the rendered results of the documents,
issue the following commands and read the result html at build/sphinx/html/index.html:

$ python setup.py build_sphinx # Builds html docs
$ python setup.py build_sphinx -b doctest # Checks if python-code embeded in comments runs ok.

	If there are no problems, commit your changes with a descriptive message.

	Repeat this cycle for other bugs/enhancements.

	When you are finished, push the changes upstream to github and make a merge_request.
You can check whether your merge-request indeed passed the tests by checking
its build-status [image: Integration-build status] [https://travis-ci.org/ankostis/wltp/builds] on the integration-server’s site (TravisCI).

Hint

Skim through the small IPython developer’s documentantion on the matter:
The perfect pull request [https://github.com/ipython/ipython/wiki/Dev:-The-perfect-pull-request]

4.3. Specs & Algorithm

This program was implemented from scratch based on
this GTR specification
(included in the docs/ folder). The latest version of this GTR, along
with other related documents can be found at UNECE’s site:

	http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc_2013.html

	https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179

	Probably a more comprehensible but older spec is this one:
https://www2.unece.org/wiki/display/trans/DHC+draft+technical+report

The WLTC-profiles for the various classes in the devtools/data/cycles/ folder were generated from the tables
of the specs above using the devtools/csvcolumns8to2.py script, but it still requires
an intermediate manual step involving a spreadsheet to copy the table into ands save them as CSV.

Then use the devtools/buildwltcclass.py to construct the respective python-vars into the
wltp/model.py sources.

Data-files generated from Steven Heinz’s ms-access vehicle info db-table can be processed
with the devtools/preprocheinz.py script.

4.3.1. Cycles

[image: _images/wltc_class1.png]
[image: _images/wltc_class2.png]
[image: _images/wltc_class3a.png]
[image: _images/wltc_class3b.png]

4.4. Tests, Metrics & Reports

In order to maintain the algorithm stable, a lot of effort has been put
to setup a series of test-case and metrics to check the sanity of the results
and to compare them with the Heinz-db tool or other datasets included in the project.
These tests can be found in the wltp/test/ folders.

Additionally, below are auto-generated representative diagrams with the purpose
to track the behavior and the evolution of this project.

You can reuse the plotting code here for building nice ipython-notebooks reports,
and (optionally) link them in the wiki of the project (see section above).
The actual code for generating diagrams for these metrics is in wltp.plots and it is invoked
by scripts in the docs/pyplot/ folder.

4.4.1. Mean Engine-speed vs PMR

First the mean engine-speed of vehicles are compared with access-db tool, grouped by PMRs:

(Source code)

Both tools generate the same rough engine speeds. There is though a trend for this project
to produce lower rpm’s as the PMR of the vehicle increases.
But it is difficult to tell what each vehicle does isolated.

The same information is presented again but now each vehicle difference is drawn with an arrow:

(Source code)

It can be seen now that this project’s calculates lower engine-speeds for classes 1 & 3 but
the trend is reversed for class 2.

4.4.2. Mean Engine-speed vs Gears

Below the mean-engine-speeds are drawn against the mean gear used, grouped by classes and class-parts
(so that, for instance, a class3 vehicle corresponds to 3 points on the diagram):

(Source code)

(Source code)

(Source code)

4.5. Development team

	
	Author:

	
	Kostis Anagnostopoulos

	
	Contributing Authors:

	
	Heinz Steven (test-data, validation and review)

	Georgios Fontaras (simulation, physics & engineering support)

	Alessandro Marotta (policy support)

4.6. Discussion

Please enable JavaScript to view the comments powered by Disqus.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

5. Frequently Asked Questions

5.1. General

5.1.1. Who is behind this? Who to contact?

The immediate involved persons is described in the Development team section.
The author is a participating member in the GS Task-Force on behalf of the EU Commission (JRC).
The contact-emails to use are ...[TBD]

5.1.2. What is the status of the project? Is it “official”?

[TBD]

5.1.3. What is the roadmap for this project?

	Short-term plans are described in the TODOs section of Changes.

	In the longer run, it is expected to incorporate more WLTP calculations and reference data so that
this projects acts as repository for diagrams and technical reports on those algorithms.

5.1.4. Can I copy/extend it? What is its License, in practical terms?

I’m not a lawyer, but in a broad view, the core algorithm of the project is “copylefted” with
the EUPL-1.1+ license, and it includes files from other “non-copyleft” open source licenses like
MIT MIT License and Apache License, appropriately marked as such. So in an nutshell, you can study it,
copy it, modify or extend it, and distrbute it, as long as you always distribute the sources of your changes.

5.2. Technical

5.2.1. I followed the instructions but i still cannot install/run/do X. What now?

If you have no previous experience in python, setting up your environment and installing a new project
is a demanding, but manageable, task. Here is a checklist of things that might go wrong:

	Did you send each command to the appropriate shell/interpreter?

You should enter sample commands starting $ into your shell (cmd or bash),
and those starting with >>> into the python-interpreter
(but don’t include the previous symbols and/or the output of the commands).

	Is python contained in your PATH ?

To check it, type python in your console/command-shell prompt and press [Enter].
If nothing happens, you have to inspect PATH and modify it accordingly to include your
python-installation.

	Under Windows type path in your command-shell prompt.
To change it, run regedit.exe and modify (or add if not already there) the PATH string-value
inside the following registry-setting:

HKEY_CURRENT_USER\Environment\

You need to logoff and logon to see the changes.

Note that WinPython does not modify your path! if you have registed it, so you definetely have to
perform the the above procedure yourself.

	Under Unix type echo $PATH$ in your console.
To change it, modify your “rc’ files, ie: ~/.bashrc or ~/.profile.

	Is the correct version of python running?

Certain commands such as pip come in 2 different versions python-2 & 3
(pip2 and pip3, respectively). Most programs report their version-infos
with --version.
Use --help if this does not work.

	Have you upgraded/downgraded the project into a more recent/older version?

This project is still in development, so the names of data and functions often differ from version to version.
Check the Changes for point that you have to be aware of when upgrading.

	Did you search [https://github.com/ankostis/wltp/issues] whether a similar issue has already been reported?

	Did you ask google for an answer??

	If the above suggestions still do not work, feel free to open a new issue and ask for help.
Write down your platform (Windows, OS X, Linux), your exact python distribution
and version, and include the print-out of the failed command along with its error-message.

This last step will improve the documentation and help others as well.

5.2.2. I do not have python / cannot install it. Is it possible to try a demo?

[TBD]

5.2.3. Discussion

Please enable JavaScript to view the comments powered by Disqus.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

6. API reference

The core of the simulator is composed from the following modules:

	pandel
	

	model
	

	experiment
	

Among the various tests, those running on ‘sample’ databases for comparing differences
with existing tool are the following:

	samples_db_tests
	

	wltp_db_tests
	

The following scripts in the sources maybe used to preprocess various wltc data:

	devtools/preprocheinz.py

	devtools/printwltcclass.py

	devtools/csvcolumns8to2.py

6.1. Module: wltp.experiment

6.2. Module: wltp.model

6.3. Module: wltp.pandel

6.4. Module: wltp.test.samples_db_tests

6.5. Module: wltp.test.wltp_db_tests

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

7. Changes

Contents

	Changes
	GTR version matrix

	Known deficiencies

	TODOs

	Releases
	v0.0.9-alpha.1, alpha.3 (1 Oct, X Noe 2014)
	Important/incompatilble changes

	Changelog
	v0.0.9-alpha.3

	v0.0.9-alpha.2

	v0.0.9-alpha.1

	v0.0.8-alpha, 04-Aug-2014

	v0.0.7-alpha, 31-Jul-2014: 1st public

	v0.0.6-alpha, 5-Feb-2014

	v0.0.5-alpha, 18-Feb-2014

	v0.0.4.alpha, 18-Jan-2014

	v0.0.3_alpha, 22-Jan-2014

	v0.0.2_alpha, 7-Jan-2014

	v0.0.1, 6-Jan-2014: Alpha release

	v0.0.0, 11-Dec-2013: Inception stage

7.1. GTR version matrix

Given a version number MAJOR.MINOR.PATCH, the MAJOR part tracks the GTR phase implemented.
The following matrix shows these correspondences:

	Release
train
	GTR ver

	0.x.x
	Till Aug 2014,
Not very Precise with the
till-that-day standard.
(diffs explained below)

	1.x.x
	After Nov 2014, phase 2b
(TBD)

7.2. Known deficiencies

	(!) Driveability-rules not ordered as defined in the latest task-force meeting.

	(!) The driveability-rules when speeding down to a halt is broken, and human-drivers should improvise.

	(!) The n_min_drive is not calculated as defined in the latest task-force meeting,
along with other recent updates.

	(!) The n_max is calculated for ALL GEARS, resulting in “clipped” velocity-profiles,
leading to reduced rpm’s for low-powered vehicles.

	Clutching-points and therefore engine-speed are very preliminary
(ie rpm when starting from stop might be < n_idle).

7.3. TODOs

	Add cmd-line front-end.

	Automatically calculate masses from H & L vehicles, and regression-curves from categories.

	wltp_db: Improve test-metrics with group-by classes/phases.

	model: Enhance model-preprocessing by interleaving “octapus” merging stacked-models
between validation stages.

	model: finalize data-schema (renaming columns and adding name fields in major blocks).

	model/core: Accept units on all quantities.

	core: Move calculations as class-methods to provide for overriding certain parts of the algorithm.

	core: Support to provide and override arbitrary model-data, and ask for arbitrary output-ones
by topologically sorting the graphs of the calculation-dependencies.

	build: Separate wltpdb tests as a separate, optional, plugin of this project (~650Mb size).

7.4. Releases

7.4.1. v0.0.9-alpha.1, alpha.3 (1 Oct, X Noe 2014)

This is practically the 2nd public releases, reworked in many parts, and much better documented and
continuously tested and build using TravisCI,
BUT the arithmetic results produced are still identical to v0.0.7, so that the test-cases and metrics
still describe this core.

7.4.1.1. Important/incompatilble changes

	
	Code:

	
	package wltc –> wltp

	class Experiment –> Processor

	
	Model changes:

	
	/vehicle/mass –> (test_mass and unladen_mass)

	/cycle_run: If present, (some of) its columns override the calculation.

	Added tkUI and Excel front-ends.

7.4.1.2. Changelog

7.4.1.2.1. v0.0.9-alpha.3

Shared with LAT.
* Use CONDA for running no TravisCI.
* Improve ExcelRunner.
* docs and metrics improvments.

7.4.1.2.2. v0.0.9-alpha.2

	ui: Added Excel frontend.

	ui: Added desktop-UI proof-of-concept (wltp.tkui).

	metrics: Add diagrams auto-generated from test-metrics into generated site (at “Getting Involved” section).

7.4.1.2.3. v0.0.9-alpha.1

	Backported also to Python-2.7.

	model, core: Discriminate between Test mass from Unladen mass (optionally auto-calced
by driver_mass = 75(kg)).

	model, core: Calculate default resistance-coefficients from a regression-curve (the one found in Heinz-db).

	model, core: Possible to overide WLTP-Class, Target-V & Slope, Gears if present in the cycle_run table.

	model: Add NEDC cycle data, for facilitating comparisons.

	tests: Include sample-vehicles along with the distribution.

	tests: Speed-up tests by caching files to read and compare.

	docs: Considerable improvements, validate code in comments and docs with doctest.

	docs: Provide a http-link to the list of IPython front-ends in the project’s wiki.

	build: Use TravisCI as integration server, Coveralls.io as test-coverage service-providers.

	build: Not possible anymore to distribute it as .EXE; need a proper python-3 environment.

7.4.2. v0.0.8-alpha, 04-Aug-2014

	Documentation fixes.

7.4.3. v0.0.7-alpha, 31-Jul-2014: 1st public

Although it has already been used in various exercises, never made it out of Alpha state.

	Rename project to ‘wltp’.

	Switch license from AGPL –> EUPL (the same license assumed retrospectively for older version)

	Add wltp_db files.

	Unify instances & schemas in model.py.

	Possible to Build as standalone exe using cx_freeze.

	
	Preparations for PyPI/github distribution.

	
	Rename project to “wltp”.

	Prepare Sphinx documentation for http://readthedocs.org.

	Update setup.py

	Update project-coordinates (authors, etc)

7.4.4. v0.0.6-alpha, 5-Feb-2014

	Make it build as standalone exe using cx_freeze.

	Possible to transplant base-gears and then apply on them driveability-rules.

	Embed Model –> Experiment to simplify client-code.

	Changes in the data-schema for facilitating conditional runs.

	More reverse-engineered comparisons with heinz’s data.

7.4.5. v0.0.5-alpha, 18-Feb-2014

	Many driveability-improvements found by trial-n-error comparing with Heinz’s.

	Changes in the data-schema for facilitating storing of tabular-data.

	Use Euro6 polynomial full_load_curve from Fontaras.

	Smooth-away INALID-GEARS.

	Make the plottings of comparisons of sample-vehicle with Heinz’results interactively report driveability-rules.

	Also report GEARS_ORIG, RPM_NORM, P_AVAIL, RPM, GEARS_ORIG, RPM_NORM results.

7.4.6. v0.0.4.alpha, 18-Jan-2014

	Starting to compare with Heinz’s data - FOUND DISCREPANCIES IMPLTYING ERROR IN BASE CALCS.

	Test-enhancements and code for comparing with older runs to track algo behavior.

	Calc ‘V_real’.

	Also report RPMS, P_REQ, DIRVEABILITY results.

	Make v_max optionally calculated from max_gear / gear_ratios.

	BUGFIX: in P_AVAIL 100% percents were mixed [0, 1] ratios!

	BUGFIX: make goodVehicle a function to avoid mutation side-effects.

	BUGFIX: add forgotten division on p_required Accel/3.6.

	BUGFIX: velocity-profile mistakenly rounded to integers!

	BUGFIX: v_max calculation based on n_rated (not 1.2 * n_rated).

	FIXME: get default_load_curve floats from Heinz-db.

	FIXME: what to to with INVALID-GEARS?

7.4.7. v0.0.3_alpha, 22-Jan-2014

	
	-Driveability rules not-implemented:

	
	missing some conditions for rule-f.

	no test-cases.

	No velocity_real.

	No preparation calculations (eg. vehicle test-mass).

	Still unchecked for correctness of results.

	
	-Pending Experiment tasks:

	
	FIXME: Apply rule(e) also for any initial/final gear (not just for i-1).

	FIXME: move V–0 into own gear.

	FIXME: move V–0 into own gear.

	FIXME: NOVATIVE rule: “Clutching gear-2 only when Decelerating.”.

	FIXME: What to do if no gear foudn for the combination of Power/Revs??

	NOTE: “interpratation” of specs for Gear-2

	NOTE: Rule(A) not needed inside x2 loop.

	NOTE: rule(b2): Applying it only on non-flats may leave gear for less than 3sec!

	NOTE: Rule(c) should be the last rule to run, outside x2 loop.

	NOTE: Rule(f): What if extra conditions unsatisfied? Allow shifting for 1 sec only??

	TODO: Construct a matrix of n_min_drive for all gears, including exceptions for gears 1 & 2.

	TODO: Prepend row for idle-gear in N_GEARS

	TODO: Rule(f) implement further constraints.

	TODO: Simplify V_real calc by avoiding multiply all.

7.4.8. v0.0.2_alpha, 7-Jan-2014

	-Still unchecked for correctness of results.

7.4.9. v0.0.1, 6-Jan-2014: Alpha release

	-Unchecked for correctness.

	Runs OK.

	Project with python-packages and test-cases.

	Tidied code.

	Selects appropriate classes.

	Detects and applies downscale.

	Interpreted and implemented the nonsensical specs concerning n_min engine-revolutions for gear-2
(Annex 2-3.2, p71).

	-Not implemented yet driveability rules.

	-Does not output real_velocity yet - inly gears.

7.4.10. v0.0.0, 11-Dec-2013: Inception stage

	Mostly setup.py work, README and help.

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	wltp 0.0.9-alpha.3 documentation

8. Indices

8.1. Glossary

	WLTP

	The Worldwide harmonised Light duty vehicles Test Procedure [https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179],
a GRPE informal working group

	UNECE

	The United Nations Economic Commission for Europe, which has assumed the steering role
on the WLTP.

	GRPE

	UNECE Working party on Pollution and Energy - Transport Programme

	GS Task-Force

	The Gear-shift Task-force of the GRPE. It is the team of automotive experts drafting
the gear-shifting strategy for vehicles running the WLTP cycles.

	WLTC

	The family of pre-defined driving-cycles corresponding to vehicles with different
PMR. Classes 1,2, 3a & 3b are split in 2, 4, 4 and 4 parts respectively.

	Unladen mass

	UM or Curb weight, the weight of the vehicle in running order minus
the mass of the driver.

	Test mass

	TM, the representative weight of the vehicle used as input for the calculations of the simulation,
derived by interpolating between high and low values for the CO2-family of the vehicle.

	Downscaling

	Reduction of the top-velocity of the original drive trace to be followed, to ensure that the vehicle
is not driven in an unduly high proportion of “full throttle”.

	pandas-model

	The container of data that the gear-shift calculator consumes and produces.
It is implemented by wltp.pandel.Pandel as a mergeable stack of JSON-schema abiding trees of
strings and numbers, formed with sequences, dictionaries, pandas [http://pandas.pydata.org/pandas-docs/dev/index.html#module-pandas]-instances and URI-references.

	JSON-schema

	The JSON schema [http://json-schema.org/] is an IETF draft [http://tools.ietf.org/html/draft-zyp-json-schema-03]
that provides a contract for what JSON-data is required for a given application and how to interact
with it. JSON Schema is intended to define validation, documentation, hyperlink navigation, and
interaction control of JSON data.
You can learn more about it from this excellent guide [http://spacetelescope.github.io/understanding-json-schema/],
and experiment with this on-line validator [http://www.jsonschema.net/].

	JSON-pointer

	JSON Pointer(RFC 6901 [http://tools.ietf.org/html/rfc6901.html]) defines a string syntax for identifying a specific value within
a JavaScript Object Notation (JSON) document. It aims to serve the same purpose as XPath from the XML world,
but it is much simpler.

8.1.1. Index

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	wltp 0.0.9-alpha.3 documentation

Index

 D
 | E
 | G
 | J
 | P
 | R
 | T
 | U
 | W

D

 	

 	DISTUTILS_DEBUG

 	

 	Downscaling, [1]

E

 	

 	
 environment variable

 	

 	DISTUTILS_DEBUG

 	PATH, [1], [2], [3], [4]

G

 	

 	GRPE, [1]

 	

 	GS Task-Force, [1]

J

 	

 	JSON-pointer, [1]

 	

 	JSON-schema, [1]

P

 	

 	pandas-model, [1]

 	

 	PATH, [1], [2], [3], [4]

R

 	

 	
 RFC

 	

 	RFC 6901, [1]

T

 	

 	Test mass, [1]

U

 	

 	UNECE, [1]

 	

 	Unladen mass, [1]

W

 	

 	WLTC, [1]

 	

 	WLTP, [1]

 Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

 _images/wltc_class3a.png
WLTC class3a

(7398 uogesapEY

gagsg8ii

s 588 88R°

(/1) ypotan

wo w0 ®o oo moo w00 100 1800

20

Time (s): 0

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		wltp 0.0.9-alpha.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, European Commission (JRC), EUPL 1.1+.
 Last updated on Jan 22, 2015.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_images/wltc_class3b.png
WLTC class3b

(7398 uogesapEY

MR

15

)

w0 w0 w0 w00 moo oo 1600

20

s 588 88R°

(/1) ypotan

Time (s): 0

_images/wltc_class1.png
To0

_images/xlwings_screenshot.png
%]

Home Inset Pagelayout Fornulas Data Review View

Visual Macros

Frecora iscro
R Use Retatie Reterences

¢ 5 REI

Adddns COM | Insert

Developer | loadTest Team

Source

e visp properties G3import
lExpsnsion packs = Eport

CY

Document

2@o@

Basic A\ Macro Security Addns - A Run Dialog @ Refresh Data Panel
code | sggins | Control: o | woaiy |
A3 - fe | vehs_df =mypy.read_table_as_df('D2') “
B [c[o [& [F [@ | I [E=
1 Run selection]
2 id le/n_vehicle/gear_ratios
- SERLChs_of(D2) veh_1 1500 100 5450 800 [120.75, 75, 50, 43, 37, 32]
veh_2 1600 80 6000 700 [120.75, 75, 50, 43, 37, 32]
veh 3 1200 60 4500 600 [120.75, 75, 50, 43, 37, 32]
5
> Add/remove
s input columns
)
10
1n
2
e}
1
W > vi| Input “F3 0Kl]] 30}

Ready |

E R o ——

_images/wltc_class2.png
WLTC class2

g

() uoriesapasay
5 g § 3

§88 83 R

(/1) ypotan

@ w0 W0 W00 moo wmoo 100 1800

0

Time (s): 0

